preCICE v2: A sustainable and user-friendly coupling library
Creators
- Chourdakis, Gerasimos1
- Davis, Kyle2
- Rodenberg, Benjamin1
- Schulte, Miriam2
- Simonis, Frédéric1
- Uekermann, Benjamin3
- Abrams, Georg2
- Bungartz, Hans-Joachim1
- Cheung Yau, Lucia1
- Desai, Ishaan3
- Eder, Konrad1
- Hertrich, Richard1
- Lindner, Florian2
- Rusch, Alexander1
- Sashko, Dmytro1
- Schneider, David3
- Totounferoush, Amin2
- Volland, Dominik1
- Vollmer, Peter2
- Koseomur, Oguz Ziya1
- 1. Scientific Computing in Computer Science, Department of Informatics, Technical University of Munich, Garching, 85748, Germany
- 2. Simulation of Large Systems, Institute for Parallel and Distributed Systems, University of Stuttgart, Stuttgart, 70569, Germany
- 3. Usability and Sustainability of Simulation Software, Institute for Parallel and Distributed Systems, University of Stuttgart, Stuttgart, 70569, Germany
Description
preCICE is a free/open-source coupling library. It enables creating partitioned multi-physics simulations by gluing together separate software packages.
This paper summarizes the development efforts in preCICE of the past five years. During this time span, we have turned the software from a working prototype -- sophisticated numerical coupling methods and scalability on ten thousands of compute cores -- to a sustainable and user-friendly software project with a steadily-growing community. Today, we know through forum discussions, conferences, workshops, and publications of more than 100 research groups using preCICE. We cover the fundamentals of the software alongside a performance and accuracy analysis of different data mapping methods. Afterwards, we describe ready-to-use integration with widely-used external simulation software packages, tests, and continuous integration from unit to system level, and community building measures, drawing an overview of the current preCICE ecosystem.
Files
openreseurope-2-16347.pdf
Files
(6.8 MB)
Name | Size | Download all |
---|---|---|
md5:360f3b2422ab42204385fdbef35d6155
|
6.8 MB | Preview Download |
Additional details
References
- Slotnick J, Khodadoust A, Alonso J (2014). CFD vision 2030 study: A path to revolutionary computational aerosciences.
- Hellerstein JL, Gu S, Choi K (2019). Recent advances in biomedical simulations: a manifesto for model engineering [version 1; peer review: 3 approved]. F1000Res. doi:10.12688/f1000research.15997.1
- Schär C, Fuhrer O, Arteaga A (2020). Kilometer-scale climate models: Prospects and challenges. B Am Meteorol Soc. doi:10.1175/BAMS-D-18-0167.1
- Keyes DE, McInnes LC, Woodward C (2013). Multiphysics simulations: Challenges and opportunities. Int J High Perform C. doi:10.1177/1094342012468181
- Anzt H, Bach F, Druskat S (2020). An environment for sustainable research software in Germany and beyond: current state, open challenges, and call for action [version 2; peer review: 2 approved]. F1000Res. doi:10.12688/f1000research.23224.2
- Lindner F, Totounferoush A, Mehl M (2020). ExaFSA: Parallel fluid-structure-acoustic simulation. doi:10.1007/978-3-030-47956-5_10
- Naseri A, Totounferoush A, González I (2020). A scalable framework for the partitioned solution of fluid–structure interaction problems. Comput Mech. doi:10.1007/s00466-020-01860-y
- Jaust A, Weishaupt K, Mehl M (2020). Partitioned coupling schemes for free-flow and porous-media applications with sharp interfaces. doi:10.1007/978-3-030-43651-3_57
- Fan W, Li H, Anglart H (2020). A study of rewetting and conjugate heat transfer influence on dryout and post-dryout phenomena with a multi-domain coupled CFD approach. Int J Heat Mass Tran. doi:10.1016/j.ijheatmasstransfer.2020.120503
- Maier B (2021). Scalable biophysical simulations of the neuromuscular system.
- Besseron X, Rousset A, Peyraut A (2021). Eulerian-lagrangian momentum coupling between XDEM and OpenFOAM using preCICE.
- Böttcher F, Davis K, Halilovic S (2021). Optimising the thermal use of groundwater for a decentralized heating and cooling supply in the city of Munich, Germany. doi:10.5194/egusphere-egu21-14929
- Bungartz HJ, Lindner F, Mehl M (2015). A plug-and-play coupling approach for parallel multi-field simulations. Comput Mech. doi:10.1007/s00466-014-1113-2
- Gatzhammer B (2015). Efficient and flexible partitioned simulation of fluid-structure interactions.
- Uekermann B (2016). Partitioned fluid-structure interaction on massively parallel systems. doi:10.14459/2016md1320661
- Lindner F (2019). Data transfer in partitioned multi-physics simulations: Interpolation & communication. doi:10.18419/opus-10581
- Bungartz HJ, Lindner F, Mehl M (2016). Partitioned fluid-structure-acoustics interaction on distributed Data: Coupling via preCICE. doi:10.1007/978-3-319-40528-5_11
- Bungartz HJ, Lindner F, Gatzhammer B (2016). preCICE – a fully parallel library for multi-physics surface coupling. Computers & Fluids. doi:10.1016/j.compfluid.2016.04.003
- Chourdakis G, Davis K, Rodenberg B (2021). preCICE Distribution Version v2104.0.
- Uekermann B, Bungartz HJ, Cheung Yau L (2017). Official preCICE adapters for standard open-source solvers.
- Totounferoush A, Simonis F, Uekermann B (2021). Efficient and scalable initialization of partitioned coupled simulations with preCICE. Algorithms. doi:10.3390/a14060166
- Andrun M, Bašić J, Blagojević B (2020). Simulating hydroelastic slamming by coupled Lagrangian-FDM and FEM. doi:10.3233/PMST200036
- Cocco A, Savino A, Montagnani D (2020). Simulation of tiltrotor maneuvers by a coupled multibody-mid fidelity aerodynamic solver.
- Wolf K, Bayrasy P, Brodbeck C (2017). MpCCI: Neutral interfaces for multiphysics simulations. doi:10.1007/978-3-319-62458-7_7
- Pelupessy F, van Elteren A, de Vries N (2013). The astrophysical multipurpose software environment. Astronomy & Astrophysics. doi:10.1051/0004-6361/201321252
- Di Natale F, Bhatia H, Carpenter TS (2019). A massively parallel infrastructure for adaptive multiscale simulations: modeling RAS initiation pathway for cancer. doi:10.1145/3295500.3356197
- Veen LE, Hoekstra AG (2020). Easing multiscale model design and coupling with MUSCLE 3. doi:10.1007/978-3-030-50433-5_33
- Neumann P, Flohr H, Arora R (2016). MaMiCo: Software design for parallel molecular-continuum flow simulations. Comput Phys Commun. doi:10.1016/j.cpc.2015.10.029
- Tang YH, Kudo S, Bian X (2015). Multiscale universal interface: a concurrent framework for coupling heterogeneous solvers. J Comput Phys. doi:10.1016/j.jcp.2015.05.004
- Liu W, Wang W, Skillen A (2021). A parallel partitioned approach on fluid-structure interaction simulation using the multiscale universal interface coupling library. doi:10.23967/wccm-eccomas.2020.272
- Groen D, Knap J, Neumann P (2019). Mastering the scales: a survey on the benefits of multiscale computing software. Philos Trans A Math Phys Eng Sci. doi:10.1098/rsta.2018.0147
- Craig A, Valcke S, Coquart L (2017). Development and performance of a new version of the OASIS coupler, OASIS3-MCT_3.0. Geosci Model Dev. doi:10.5194/gmd-2017-64
- Hanke M, Redler R, Holfeld T (2016). Yac 1.2.0: new aspects for coupling software in earth system modelling. Geosci Model Dev. doi:10.5194/gmd-9-2755-2016
- Liu L, Zhang C, Li R (2018). C-Coupler2: a flexible and user-friendly community coupler for model coupling and nesting. Geosci Model Dev. doi:10.5194/gmd-11-3557-2018
- Janssen J, Surendralal S, Lysogorskiy Y (2019). pyiron: An integrated development environment for computational materials science. Comput Mater Sci. doi:10.1016/j.commatsci.2018.07.043
- Ludäscher B, Altintas I, Berkley C (2006). Scientific workflow management and the Kepler system. Concurr Comput. doi:10.1002/cpe.994
- Slattery S, Wilson P, Pawlowski R (2013). The data transfer kit: a geometric rendezvous-based tool for multiphysics data transfer. International conference on mathematics & computational methods applied to nuclear science & engineering (M&C 2013).
- Duchaine F, Jauré S, Poitou D (2015). Analysis of high performance conjugate heat transfer with the OpenPALM coupler. Comput Sci Discov. doi:10.1088/1749-4699/8/1/015003
- Totounferoush A, Naseri A, Chiva Segura J (2021). A GPU Accelerated Framework for Partitioned Solution of Fluid-Structure Interaction Problems. doi:10.23967/wccm-eccomas.2020.021
- Rüth B, Uekermann B, Mehl M (2020). Quasi-Newton waveform iteration for partitioned surface-coupled multiphysics applications. Int J Numer Methods Eng. doi:10.1002/nme.6443
- Mehl M, Uekermann B, Bijl H (2016). Parallel coupling numerics for partitioned fluid-structure interaction simulations. Comput Math Appl. doi:10.1016/j.camwa.2015.12.025
- Lindner F, Mehl M, Scheufele K (2015). A comparison of various quasi-Newton schemes for partitioned fluid-structure interaction. ECCOMAS Coupled Problems.
- Scheufele K, Mehl M (2017). Robust Multisecant Quasi-Newton Variants for Parallel Fluid-Structure Simulations—and Other Multiphysics Applications. SIAM J Sci Comput. doi:10.1137/16M1082020
- Küttler U, Wall WA (2008). Fixed-point fluid-structure interaction solvers with dynamic relaxation. Comput Mech. doi:10.1007/s00466-008-0255-5
- Bogaers A, Kok S, Reddy B (2014). Quasi-Newton methods for implicit black-box FSI coupling. Comput Methods Appl Mech Eng. doi:10.1016/j.cma.2014.06.033
- Degroote J, Bathe KJ, Vierendeels J (2009). Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction. Comput Struct. doi:10.1016/j.compstruc.2008.11.013
- Scheufele K (2015). Robust quasi-Newton methods for partitioned fluid-structure simulations.
- Scheufele K (2019). Coupling schemes and inexact Newton for multi-physics and coupled optimization problems.
- Haelterman R, Bogaers A, Scheufele K (2016). Improving the performance of the partitioned QN-ILS procedure for fluid-structure interaction problems: filtering. Comput Struct. doi:10.1016/j.compstruc.2016.04.001
- de Boer A, van Zuijlen A, Bijl H (2008). Comparison of conservative and consistent approaches for the coupling of non-matching meshes. Comput Methods Appl Mech Eng. doi:10.1016/j.cma.2008.05.001
- Lindner F, Mehl M, Uekermann B (2017). Radial basis function interpolation for black-box multi-physics simulations. International Conference on Computational Methods for Coupled Problems in Science and Engineering.
- Deparis S, Forti D, Quarteroni A (2014). A rescaled localized radial basis function interpolation on non-cartesian and nonconforming grids. SIAM J Sci Comput. doi:10.1137/130947179
- Balay S, Abhyankar S, Adams MF (2019). PETSc users manual. doi:10.2172/1577437
- Guennebaud G, Jacob B (2010). Eigen v3.
- Geuzaine C, Remacle JF (2009). Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int J Numer Methods Eng. doi:10.1002/nme.2579
- Simonis F, Davis K, Uekermann B (2022). Test Setup of Turbine Blade Data Mapping.
- Shukaev A (2015). A fully parallel process-to-process intercommunication technique for preCICE.
- Gamblin T, LeGendre M, Collette MR (2015). The Spack pack- age manager: bringing order to HPC software chaos. SC15: International Conference for High-Performance Computing, Networking, Storage and Analysis. doi:10.1145/2807591.2807623
- Volland D (2019). Coupling TherMoS with preCICE.
- Ellson J, Gansner ER, Koutsofios E (2003). Graphviz and dynagraph – static and dynamic graph drawing tools. GRAPH DRAWING SOFTWARE.
- Weller HG, Tabor G, Jasak H (1998). A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput Phys. doi:10.1063/1.168744
- Yau LC (2016). Conjugate heat transfer with the multiphysics coupling library preCICE.
- Chourdakis G (2017). A general OpenFOAM adapter for the coupling library preCICE.
- Risseeuw D (2019). Fluid structure interaction modelling of flapping wings.
- Chourdakis G, Uekermann B, van Zwieten G (2019). Coupling OpenFOAM to different solvers, physics, models, and dimensions using preCICE.
- Seuffert J, Kärger L, Chourdakis G (2019). Fluid structure interaction during the resin transfer molding (RTM) manufacturing process for continuous fiber reinforced composites.
- Rousset A (2020). 6-way coupling of DEM+CFD+FEM with preCICE.
- Arya N (2020). Volume coupling using preCICE for an aeroacoustic simulation.
- Scheiblhofer S, Jäger S, Horr AM (2019). Coupling FEM and CFD solvers for continuous casting process simulation using preCICE.
- Tukovic Z, Karac A, Cardif P (2018). OpenFOAM finite volume solver for fluid-solid interaction. Transactions of FAMENA. doi:10.21278/TOF.42301
- Cardiff P, Karac A, Jaeger PD (2018). An open-source finite volume toolbox for solid mechanics and fluid-solid interaction simulations. doi:10.48550/arXiv.1808.10736
- Hewitt S, Margetts L, Revell A (2019). OpenFPCI: A parallel fluid–structure interaction framework. Comput Phys Commun. doi:10.1016/j.cpc.2019.05.016
- Vencels J, Råback P, Geža V (2019). EOF-library: Open-source Elmer FEM and OpenFOAM coupler for electromagnetics and fluid dynamics. SoftwareX. doi:10.1016/j.softx.2019.01.007
- Herb J (2014). Coupling OpenFOAM with thermo-hydraulic simulation code ATHLET.
- Rave K (2017). Kopplung von OpenFOAM und deal.II Gleichungslösern mit preCICE zur Simulation multiphysikalischer Probleme.
- Schneider D (2018). Simulation von Fluid-Struktur-Interaktion mit der Kopplungsbibliothek preCICE.
- Economon T, Palacios F, Copeland S (2015). SU2: An open-source suite for multiphysics simulation and design. AIAA Journal. doi:10.2514/1.J053813
- Rusch A (2016). Extending SU2 to fluid-structure interaction via preCICE.
- Thomas D, Cerquaglia M, Boman R (2019). Cupydo-an integrated python environment for coupled fluid-structure simulations. Advances in Engineering Software. doi:10.1016/j.advengsoft.2018.05.007
- Burghardt O, Gauger N, Gomes P (2020). Coupled discrete adjoints for multi-physics in SU2. doi:10.2514/6.2020-3139
- Sánchez Fernández R (2017). A coupled adjoint method for optimal design in fluid-structure interaction problems with large displacements. doi:10.25560/58882
- Dhondt G (2004). The finite element method for three-dimensional thermomechanical applications. doi:10.1002/0470021217
- Dhondt G (2020). CalculiX CrunchiX user's manual version 2.17.
- Alnæs MS, Blechta J, Hake J (2015). The FEniCS project version 1.5. Archive of Numerical Software. doi:10.11588/ans.2015.100.20553
- Langtangen HP, Logg A (2016). Solving PDEs in Python - The FEniCS tutorial I. doi:10.1007/978-3-319-52462-7
- Rodenberg B, Desai I, Hertrich R (2021). FEniCS-preCICE: Coupling FEniCS to other simulation software. SoftwareX. doi:10.1016/j.softx.2021.100807
- Rathgeber F, Ham DA, Mitchell L (2016). Firedrake: Automating the finite element method by composing abstractions. ACM Transactions on Mathematical Software. doi:10.1145/2998441
- Bergersen AW, Slyngstad A, Gjertsen S (2020). turtleFSI: A robust and monolithic FEniCS-based fluid-structure interaction solver. J Open Source Softw. doi:10.21105/joss.02089
- Hoffman J, Jansson J, Degirmenci NC (2017). FEniCS-HPC: Coupled multiphysics in computational fluid dynamics. doi:10.1007/978-3-319-53862-4_6
- Arndt D, Bangerth W, Blais B (2020). The deal.II library, version 9.2. J Numer Math. doi:10.1515/jnma-2020-0043
- Arndt D, Bangerth W, Davydov D (2021). The deal.II finite element library: Design, features, and insights. Comput Math Appl. doi:10.1016/j.camwa.2020.02.022
- Bangerth W, Burstedde C, Heister T (2011). Algorithms and data structures for massively parallel generic adaptive finite element codes. ACM Trans Math Softw. doi:10.1145/2049673.2049678
- Kronbichler M, Wall WA (2018). A performance comparison of continuous and discontinuous galerkin methods with fast multigrid solvers. SIAM J Sci Comput. doi:10.1137/16M110455X
- Arndt D, Fehn N, Kanschat G (2020). ExaDG: High-order discontinuous Galerkin for the exa-scale. Software for Exascale Computing - SPPEXA 2016-2019. doi:10.1007/978-3-030-47956-5_8
- Wick T (2013). Solving monolithic fluid-structure interaction problems in arbitrary Lagrangian Eulerian coordinates with the deal.II library. Archive of Numerical Software. doi:10.11588/ans.2013.1.10305
- van Zwieten G, van Zwieten J, Verhoosel C (2019). Nutils. Zenodo. doi:10.5281/zenodo.3243447
- Hertrich R (2018). Aktualisierung des preCICE-Fluent Adapters, MSE-Forschungspraktikum project report.
- Vynnycky M, Kimura S, Kanev K (1998). Forced convection heat transfer from a flat plate: the conjugate problem. Int J Heat Mass Transf. doi:10.1016/S0017-9310(97)00113-0
- Birken P, Quint KJ, Hartmann S (2010). A time-adaptive fluid-structure interaction method for thermal coupling. Comput Visual Sci. doi:10.1007/s00791-010-0150-4
- Birken P, Gleim T, Kuhl D (2015). Fast solvers for unsteady thermal fluid structure interaction. Int J Numer Methods Fluids. doi:10.1002/fld.4040
- Turek S, Hron J (2006). Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow. Fluid-structure interaction. doi:10.1007/3-540-34596-5_15
- Fowler M (2007). Mocks aren't stubs.
- van der Walt S, Colbert SC, Varoquaux G (2011). The NumPy array: A structure for efficient numerical computation. Comput Sci Eng. doi:10.1109/MCSE.2011.37
- Behnel S, Bradshaw R, Citro C (2011). Cython: The best of both worlds. Comput Sci Eng. doi:10.1109/MCSE.2010.118
- Tange O (2011). GNU parallel - the command-line power tool.
- Revell A, Afgan I, Ali A (2020). Coupled hybrid RANS-LES research at the University of Manchester. ERCOFTAC Bull.
- Mariño J, Schäfer M (2019). Investigation of discretization methods for simulating multiphase flows with moving grids. International Conference on Multiphase Flow.
- Folkersma M, Schmehl R, Viré A (2020). Steady-state aeroelasticity of a ram-air wing for airborne wind energy applications. J Phys Conf Ser. doi:10.1088/1742-6596/1618/3/032018
- Cinquegrana D, Vitagliano PL (2021). Validation of a new fluid—structure interaction framework for non-linear instabilities of 3D aerodynamic configurations. J Fluids Struct. doi:10.1016/j.jfluidstructs.2021.103264
- Huang Q, Abdelmoula A, Chourdakis G (2021). CFD/CSD coupling for an isolated rotor using preCICE. 14th World Congress on Computational Mechanics (WCCM). doi:10.23967/wccm-eccomas.2020.081
- Srivastava S, Damodaran M, Khoo BC (2019). A computational framework for assessment of fuel sloshing effects on transonic wing flutter characteristics. AIAA Scitech 2019 Forum. doi:10.2514/6.2019-1527
- Kersschot J, Denayer H, De Roeck W (2020). Simulation of strong vibro-acoustic coupling effects in ducts using a partitioned approach in the time domain. Proceedings of the ISMA2020 International Conference on Noise and Vibration Engineering.
- Nguyen VT, Gatzhammer B (2015). A fluid structure interactions partitioned approach for simulations of explosive impacts on deformable structures. Int J Impact Eng. doi:10.1016/j.ijimpeng.2015.01.008
- Zhang S, Guo XW, Li C (2020). Numerical study of fluid-structure interaction dynamics under high-explosive detonation on massively parallel computers. 2020 IEEE 22nd International Conference on High Performance Computing and Communications; IEEE 18th International Conference on Smart City; IEEE 6th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). doi:10.1109/HPCC-SmartCity-DSS50907.2020.00065
- Davis K (2018). Numerical and experimental investigation of the hemodynamics of an artificial heart valve.
- Luo Y, Xiao Q, Shi G (2020). A fluid-structure interaction solver for the study on a passively deformed fish fin with non-uniformly distributed stiffness. J Fluids Struct. doi:10.1016/j.jfluidstructs.2019.102778
- De Santis D, Shams A (2019). An advanced numerical framework for the simulation of flow induced vibration for nuclear applications. Ann Nucl Energy. doi:10.1016/j.anucene.2019.02.049
- Desai I (2020). Geometric aspects of code coupling in magnetic fusion applications. doi:10.13140/RG.2.2.18821.27368
- Schmidt P, Jaust A, Steeb H (2021). Simulation of flow in deformable fractures using a quasi-Newton based partitioned coupling approach.
- Koch T, Gläser D, Weishaupt K (2021). DuMu 3 - an open-source simulator for solving flow and transport problems in porous media with a focus on model coupling. Comput Math Appl. doi:10.1016/j.camwa.2020.02.012
- Firmbach M (2021). Aeroelastic simulation of slender wings for electric aircraft.
- Klimach H, Jain K, Roller S (2014). End-to-end parallel simulations with APES. Parallel computing: accelerating computational science and engineering (CSE). doi:10.3233/978-1-61499-381-0-703
- Krais N, Beck A, Bolemann T (2021). FLEXI: A high order discontinuous Galerkin framework for hyperbolic-parabolic conservation laws. Comput Math Appl. doi:10.1016/j.camwa.2020.05.004
- Espinosa Pelaez FJ (2020). A flexible approach to 2D-3D coupling of a shallow-water equation solver to OpenFOAM.
- Chourdakis G (2019). Creating a community of contributors for scientific open-source projects: The preCICE case. NL- RSE19.