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Abstract 
preCICE is a free/open-source coupling library. It enables creating 
partitioned multi-physics simulations by gluing together separate 
software packages. 
This paper summarizes the development efforts in preCICE of the past 
five years. During this time span, we have turned the software from a 
working prototype -- sophisticated numerical coupling methods and 
scalability on ten thousands of compute cores -- to a sustainable and 
user-friendly software project with a steadily-growing community. 
Today, we know through forum discussions, conferences, workshops, 
and publications of more than 100 research groups using preCICE. We 
cover the fundamentals of the software alongside a performance and 
accuracy analysis of different data mapping methods. Afterwards, we 
describe ready-to-use integration with widely-used external 
simulation software packages, tests, and continuous integration from 
unit to system level, and community building measures, drawing an 
overview of the current preCICE ecosystem.
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1 Plain language summary
Computer models are a key component of almost every research 
in science and engineering. They back up and connect the two 
traditional research methods; theory and experiment. Often, 
however, individual computer models are not enough to under-
stand and describe phenomena and processes in science and 
engineering. Instead, multiple computer models need to be  
combined. Combining these models (also referred to as  
‘coupling’) is what the software package preCICE does.

As of 2022, over 100 research groups from various fields use 
preCICE to couple their computer models. This includes, for 
example, research groups in aerospace engineering, biomedi-
cal engineering, and climate and environmental research. Thus, 
preCICE’s sustainability (Can I reproduce my research results  
using preCICE in five years?) and usability (How much do I  
need to learn before I can start doing my research with  
preCICE?) are critical factors.

How this sustainability and usability has drastically been  
improved during the past five years, is the topic of this paper. It 
summarizes the work done by the authors (the development  
team of preCICE), including for example automatic test-
ing, documentation, accuracy analysis of the methods imple-
mented in preCICE, and ready-to-use integration with commonly  
used computer models.

2 Introduction
Flexible, modular simulation environments are key to many 
important application fields such as aerospace engineering1,  
biomedical engineering2, climate and environmental research3, 
and many others. The need to provide smart mathematical and  
software solutions to combine different aspects of such  
simulations in a modular way is an emerging challenge4. 
With increasing complexity of the respective software envi-
ronments, the usability and maintainability of the involved  
software components become a critical issue, which is addressed 
by a growing research software engineering community (see,  
e.g., a recent position paper of the German community5).

We present the software package preCICE, which enables 
black-box coupling of separate solvers for different types of  
numerical models. It has originally been developed for  

modular, so-called partitioned, simulations of fluid-structure 
interactions, i.e., the combination of a flow solver with a struc-
tural mechanics solver via a common surface at which forces 
and displacements are exchanged. Over the past ten years, 
preCICE has developed into a far more general tool for parti-
tioned simulations, which can handle different types of coupling  
(weak/strong, explicit/implicit, surface/volume) and any type 
of equations. Examples range from fluid-structure-acoustics  
interactions6, over blood flow simulation in the human body7, 
free-flow porous media coupling8, conjugate heat transfer9,  
muscle-tendon system simulations10, flow-particle coupling11, 
to coupling between subsurface flow and planning tools for  
geothermal energy infrastructure12. The coupling is not 
restricted to a pair of solvers, but has been extended to enable  
multi-component coupling of arbitrarily many solvers13.

preCICE offers comprehensive functionality far beyond simple 
data exchange: It provides (i) a variety of mapping methods for 
data transfer between non-matching meshes of different solv-
ers, (ii) quasi-Newton acceleration methods for iterative implicit 
coupling, and (iii) bottleneck-free point-to-point communica-
tion between processes of parallel solvers. preCICE was origi-
nally designed with surface coupling in mind, but most features 
can and have been used for volume coupling as well. All cou-
pling numerics and communication are implemented in a library 
approach and are fully parallelized. The library can be used 
via a high-level application programming interface (API) in a 
minimally-invasive way (from the perspective of the coupled  
solvers).

The first version of preCICE, as presented by Bernhard  
Gatzhammer in his dissertation14, used a server process per cou-
pled solver and was, thus, not very efficient for the coupling 
of parallel solvers. Later works15–17 transformed preCICE to a 
fully parallel library with point-to-point communication, which 
shows good scalability on ten thousands of compute cores. 
A first overview paper of preCICE was published in 201618,  
summarizing basic functionality, the API, and the user-specific 
configuration as well as showing example applications and vali-
dation cases. Semantic versioning of preCICE was introduced  
in 2017.

In this paper, we summarize new developments from 2016 to 
2021, i.e., from the first reference paper18 to the release v2.2,  
which is part of the first preCICE distribution v2104.019 – a  
complete ecosystem of preCICE components. We present 
an overview of the functionality of preCICE in Section 3, in  
particular the numerical coupling methods, i.e., quasi-Newton 
iterations and data mapping. We complement the description of  
methods for data mapping with a performance and accuracy 
study using realistic 3D turbine blade meshes. Section 3, in  
addition, gives details on the installation process of preCICE. 
Beyond the core of preCICE, we describe the newly-developed, 
ready-to-use adapters20 for many widely-used simulation software 
projects in Section 4. Section 5 introduces a simple conju-
gate heat transfer (CHT) scenario and a simple fluid-structure 
interaction (FSI) scenario as illustrative examples on how to 
use preCICE with any of these simulation software projects,  
followed by the presentation of a systematic multi-level  
testing infrastructure in Section 6. In the past years, preCICE has  

          Amendments from Version 1
Besides fixing typographic errors and the citation style, we 
shortened the manuscript wherever reasonable as suggested by 
the reviewers: For instance, we removed the algorithm sketching 
the data mapping error computation and we shortened the 
text in Section 4 (Official Adapters) significantly. Additionally, 
we added a paragraph to the introduction to better guide 
readers on what to read when. We tried to reduce ambiguity 
of statements, unsupported assertions, and value judgments 
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mapping methods and discuss their limitations.
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become a widely used software ecosystem, for which we have  
built up a community of users, as we show in Section 7.

Please note, that not all of these sections need to be read at 
once and neither in the given order. For readers already famil-
iar with preCICE, it is safe to skip Section 3. For readers new 
to preCICE, it can instead be sufficient to only read Section 3 
in the first go, potentially followed by part of Section 4 and  
Section 5. Section 4 is mainly meant as an overview of all avail-
able adapters. It is sufficient to only read those that you intend 
to use. Finally, Section 6 and Section 7 are rather independent of  
the rest of the paper.

Our description focuses on (i) usability (by providing robust  
numerical choices, the multitude of ready-to-use adapter codes, 
well-structured documentation, and easily-accessible illustrative 
examples), (ii) reliability (by the systematic multi-level testing 
concept), and (iii) sustainability (by continuous integration, 
well-defined development and release cycles and a concept to  
involve the community in the software development). For a 
more classical description of preCICE including classical valida-
tion with benchmarks, we refer the reader to the first reference  
paper18. Performance-focused publications17,21 also demonstrate 
recent performance and scalability improvements. The contribu-
tions of this paper enable new scientific insights in the research 
fields of our users, but also provide new experiences in scien-
tific software engineering. Results for various applications run 
with preCICE have been published in many other papers such  
as7–9,22,23 (see also Section 7).

Naturally, preCICE is not the only general-purpose coupling  
software that has been developed during the past decades. In the 
following short summary of related tools, we focus particularly 
on user-focused and open-source software (i.e., we do not focus 
on in-house or commercial coupling software, e.g., MpCCI24). 

There is a number of more multi-scale oriented tools, such as  
Amuse25, MuMMI26, MUSCLE 327, MaMiCo28, or MUI29. Often, 
the categories of use cases are not strict. MUI, for example, has 
recently also been used for fluid-structure interaction30. At the  
same time, current work on preCICE aims towards certain  
multi-scale coupling patterns (cf. Section 8). A good review on 
multi-scale coupling software is provided in Groen D, et al.31. 
For climate simulations, a number of specialized tools are avail-
able, for example OASIS3-MCT32, YAC33, and C-Coupler234.  
In principle, the term ’coupling’ is not well-defined. For exam-
ple, software such as pyiron35 or the Kepler Project36 are referred 
to as coupling software as well, whereas they refer to work-
flow coupling and not a strong coupling between different  
simultaneously running simulations.

The two software projects most similar to preCICE are presum-
ably DTK37 and OpenPALM38. DTK offers an API that targets 
lower-level operations compared to preCICE. Its main job is  
to map and communicate data between different meshes in  
parallel. The implementation of the actual coupling logic is left 
to the user, which leads to greater flexibility, but also to more  
development effort for the user. OpenPALM employs a similar 
API, provided by CWIPI. The front end of OpenPALM, however, 
provides a higher-level API that includes coupling logic. On 
top, a graphical user interface is available to configure and 
steer coupled simulations. The largest difference of preCICE  
compared to DTK and OpenPALM is presumably the large  
number of ready-to-use adapters to widely-used simulation  
software packages (e.g., OpenFOAM, SU2, FEniCS, deal.II, or 
CalculiX) (cf. Section 4).

3 The preCICE library
In this section, we present the core library of preCICE in a  
nutshell. Figure 1 visualizes the concept and basic functional  
components of preCICE. In the figure, several types of simulation 

Figure 1. Concept and basic functional components of preCICE. Components that are work in progress and not yet released are shown 
as faded (time interpolation).
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codes are coupled: computational fluid dynamics (CFD)  
solvers, finite-element method (FEM) solvers, in-house solvers, 
and particle solvers. Please note that we use these types 
as examples to introduce the overall concept, not as strict  
non-overlapping categories. In the following, we refer to coupled  
simulation codes as participants of a coupled simulation. The 
glue code between a participant’s code and the preCICE library  
is called adapter. Depending on the participant, an adapter can 
be a module or a class of the participant’s code or a complete  
stand-alone software, which uses some callback interface of 
the participant. In some cases, an adapter can also be a sophisti-
cated script that calls the participant as well as preCICE, but such 
a software design contradicts the main idea behind the library  
approach of preCICE to some extent. preCICE comes with  
several ready-to-use adapters, which are listed in the picture. 
Not all adapters, though, feature the same level of maturity. 
Users of preCICE can develop adapters for their own (in-house) 
codes by using the preCICE API, which is available in many  
important languages used in scientific computing. An adapter 
is responsible for what we call coupling physics, meaning how 
to translate nodal coupling values from preCICE into boundary  
conditions or forcing terms and, reciprocally, how to extract 
nodal coupling values from internal fields to provide them to  
preCICE. If we say that an adapter can handle a certain type 
of coupling physics, for example conjugate-heat transfer, it  
basically means which type of variables, e.g., temperature or  
heat flux, the adapter is able to read and write.

preCICE itself has no notion of physics. Instead, preCICE  
itself is responsible for the technical aspects of coupling and 
the coupling numerics, depicted in the middle of Figure 1. 
We now give a first brief overview of these components going  
from top left to bottom right: (i) Coupled participants are sepa-
rate executables, potentially running on different nodes in a  
heterogeneous compute cluster with independent MPI commu-
nicators. For instance, a participant running on multiple CPU 
nodes could be coupled to a participant running on multiple 
GPU-nodes39. preCICE handles the communication between 
these executables. The communication is asynchronous and 
completely parallel. Only those ranks of the participants that 
need to exchange coupling data communicate with each other.  
Technically, the communication is based on either MPI Ports 
or TCP/IP, configurable at runtime; (ii) preCICE implements  
coupling schemes. Coupling schemes, on the one hand, define 
the logical coupling flow, i.e., which participant sends which data 
to which other participant and how the execution of time steps 
is synchronized between the participants. On the other hand,  
coupling schemes comprise acceleration methods for implicit 
coupling such as Aitken under-relaxation or quasi-Newton  
methods; (iii) Moreover, preCICE allows to map coupling data 
between non-matching and non-conforming coupling meshes. 
To this end, the user can choose between projection-based  
methods (nearest-neighbor or nearest-projection) or radial-basis  
function interpolation; (iv) Finally, preCICE also handles  
interpolation in time. Currently, only plain sub-cycling is  
supported, but higher-order interpolation is under development40 
and will be available in future releases.

Please note that, even though Figure 1 depicts a significant  
green box in the middle, there is no central server-like instance 

running, even for parallel simulations. preCICE uses a pure  
peer-to-peer library approach. The only executables that are  
started are the participants, which all call preCICE.

The current section describes the main concepts of the core  
library and is structured as follows. In Section 3.1, Section 3.2, 
and Section 3.3, we describe the methods preCICE uses for  
coupling schemes, data mapping, and communication, respec-
tively. Different options to get and, if necessary, build preCICE  
are listed in Section 3.4. Finally, Section 3.5 explains the API  
and the runtime configuration of preCICE.

3.1 Coupling schemes and acceleration
Coupling schemes and acceleration methods are at the very 
center of the preCICE core and define the coupling flow. As they 
have been studied in numerous publications (e.g., 41–43), we 
restrict the description to a short summary showcasing which  
combinations of coupling options and acceleration schemes lead  
to robust and efficient partitioned simulations.

The coupling options can be configured at runtime. preCICE 
distinguishes: (i) uni-directional or bi-directional coupling,  
i.e., data dependencies between the participants in one direction 
only (example: full flow simulation coupled to an acoustic far 
field, where the acoustic far fields receives background velocity  
and pressure values as well as acoustic perturbations at the  
coupling interface, but we do not observe acoustic waves 
traveling back into the flow region) or data dependencies in both  
directions (e.g., fluid-structure interaction); (ii) explicit or  
implicit coupling, i.e., execution of each participant once per  
time step or execution of multiple iterations per time step, such 
that the values at the end of the time step fulfil all coupling  
conditions; and (iii) parallel or serial coupling, i.e., simultaneous 
or one-after-the-other execution of participants.

Uni-directional coupling requires data transfer only from one 
participant to the other. Thus, only an explicit coupling makes  
sense in this case, which can, however, be both serial or  
parallel. For bi-directional coupling, we have four different  
coupling scheme options: (i) parallel-explicit, (ii) serial-explicit, 
(iii) parallel-implicit, (iv) serial-implicit. We show the six  
different resulting coupling schemes in Figure 2.

In the following, we focus on two non-trivial aspects of  
coupling: the coupling of more than two participants (multi-code 
coupling) and the choice of suitable convergence acceleration 
schemes for implicit coupling.

Multi-code coupling For multi-code coupling, coupling  
schemes can be configured in two different ways: (i) for each 
pair of participants separately or (ii) as an overall multi-coupling 
scheme. For (i), theoretically, all combinations of coupling 
options are possible. However, combinations of several pairwise 
implicit coupling schemes have been shown to be numerically  
unstable13. Still, pairwise coupling can be the best option for 
some combinations of explicit and implicit coupling. One 
such example is the extension of the fluid-acoustics example  
mentioned above6: a bi-directional, implicit, and serial cou-
pling of a structure solver with a flow solver, combined with 
a uni-directional, explicit, and parallel coupling of the flow 
solver to the acoustics solver (see Figure 3). To equally balance  
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Figure 2. Different coupling options in preCICE for two participants S1  and S2  defined by combinations of (i) uni-directional 
or bi-directional (data transfer between two participants only in one or in both directions); (ii) explicit or implicit (execution of 
both participants once per time step or iterative solution of a fixed-point equation); (iii) parallel or sequential (simultaneous 
or one-after-the-other execution of two participants). A symbolizes a convergence acceleration method.

Figure 3. Example for a pairwise multi-code coupling: bi-directional implicit sequential coupling between a structure solver 
and a flow solver (assuming three iterations per time step) and uni-directional explicit parallel coupling between the flow 
solver and an acoustics solver. The ExaFSA project report6 presents more details on the required data buffering allowing to achieve 
parallel efficiency by overlapping the acoustic far field solver with the fluid-structure iterations of the next time step.

computational load, this overall scheme requires buffering of 
the data to be communicated to the acoustics solver, which 
is another feature provided by preCICE6. In contrast to pair-
wise coupling, for multi-coupling schemes, the only reasonable  
realization is parallel coupling, i.e., their  combined input and 
output can be used in the coupling acceleration for implicit  
coupling as described below.

Acceleration of implicit coupling iterations Implicit parts of 
the coupling schemes described above always require solving a  
fixed-point equation

( ) .=H x x

To give some example, consider serial coupling of two partici-
pants S1 : x1 ↦ x2 and S2 : x2 ↦ x1 or the parallel multi-coupling  
of three participants S1 : (x2, x3) ↦ (y2, y3), S2 : y2 ↦ x3, and  
S3 : y3 ↦ x3. The corresponding fixed-point equations  
read

, ,( ) ( ),

( ) and ( ) ,

( ) .

 = 
 

= = 
 = 

�

S x x y y

S S x x S y x

S y x

1 2 3 2 3

2 1 1 1 2 2 2

3 3 3

If multiple coupling data vectors are combined in a single  
fixed-point equation as in the last example, it is numerically  
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beneficial to bring all data to the same scale by an automatic  
weighting (called preconditioner in preCICE15).

The pure fixed-point iterations can be enhanced with an accel-
erator A, which uses all input and output information of the  
operator H collected in previous iterations:

( ,..., , ( ),..., ( )).+ =x x x H x H x1 0 0k k kA

The simplest acceleration scheme is Aitken’s under-relaxation 
as presented, e.g., by Küttler et al.44. It reuses only information  
from the last iteration. For most applications, quasi-Newton 
schemes

prev prev( ,..., , ( ),..., ( )) ( ) ( )= + − −�
kx x H x H x x W J V ® J R x0 0k k k k k

kA  (1)

are significantly more efficient and robust15. Here, αk is a  
coefficient vector, �xk ≔ H(xk), R(xk) ≔ H(xk) − xk. We use the 
matrix Jprev to include knowledge about the inverse Jacobian  
already achieved in previous time steps45. In the classical 
quasi-Newton methods for fluid-structure interaction as intro-
duced by Degroote et al.46, Jprev is zero. The matrices V

k
 and 

W
k
 collect residual and value differences throughout previous  

iterations:

[ , ,..., ], with ,

[ , ,..., ], with ( ) ( )

k

k

= ∆ ∆ ∆ ∆ = −

= ∆ ∆ ∆ ∆ = −

� � � � � �

k

k k k k i
ik k

k k k k i
ik

W x x x x x x

V r r r r R x R x

0 1 -1

0 1 -1

with the number k of iterations done so far1. In practice, the left-
most columns of V

k
 and W

k
 can always be dropped in cases  

where several iterations (k) are required for convergence.

Equation (1) is an approximation of the modified Newton  
iteration

( ),k+ −= − ��k k

R
x x J R x1 1

where −
�R

J 1 is the inverse Jacobian of �R : �xi → R(xi). To 

derive Equation (1), −
�R

J 1 is approximated by the solution  
−
kJ
1 = (W

k 
– JprevV

k
) T

kV  (V
k
 T

kV )−1 + Jprev of the multi-secant  
equation2

−
kJ
1 V k = Wk under the norm minimization  

                               ‖ −
kJ
1 − Jprev‖F ← min,                                  (2)

where ‖ · ‖
F
 denotes the Frobenius norm. In the following, we 

shortly present the main two quasi-Newton classes, IQN-ILS 
and IQN-IMVJ, provided by preCICE, and we introduce the  
so-called filtering that can improve the robustness of both.

IQN-ILS For Jprev = 0, we get the classical interface quasi- 
Newton inverse least squares method as introduced by Degroote 
et al.46. For this approach, re-using information from previous  
time steps by adding further columns to V

k
 and W

k
 can help speed 

up the coupling iterations significantly. However, the optimal  
number of reused time steps strongly depends on the involved  
equations, on the discretization of the respective fields and even 
their mesh resolution43.

IQN-IMVJ For Jprev chosen as the last inverse Jacobian  
approximation of the previous time step, an idea adopted from 
the work of Bogaers et al.45 in later studies42,47, we get the method  
called interface quasi-Newton inverse multi-vector Jacobian. A  
variety of restart mechanisms allows us to implement this  
method with linear complexity in the number of coupling 
unknowns by avoiding storing the full matrix Jprev. Only low-rank  
additive components are stored and the respective sum is re-set  
after a chunk of time steps. The size of these chunks is configura-
ble by the user, but its influence on the convergence behavior is  
not very significant43,48.

Filtering Since linear dependencies of columns in V
k
 cannot 

be avoided in both IQN-ILS and IQN-IMVJ, we implemented  
various filtering algorithms, which automatically delete columns  
that cause (near) linear dependencies. This eliminates both  
contradicting and outdated information49.

All quasi-Newton variants are implemented in a fully-parallel  
way based on parallel QR-solvers for the calculation of com-
ponents of −

kJ
1 and the matrix-vector product −

kJ
1 R(xk). We 

do not present numerical results in this section, but refer to  
separate publications15,41,43 for detailed comparisons of quasi- 
Newton variants and examples showcasing their efficiency and 
robustness.

3.2 Data mapping
In a coupled simulation, participants exchange data via coupling 
meshes. The coupling meshes of each pair of participants  
discretize either the common coupling interface (for surface  
coupling) or a common volume (for volume coupling). However, 
the discretization approaches of the two participants are usually 
different, leading to non-matching meshes. In order to transfer  
physical variables between these non-matching meshes, we  
use data mappings. 

In the current version of preCICE, provided data mapping meth-
ods are restricted to methods that work in a black-box way on 
point clouds (nearest-neighbour mapping, radial basis func-
tion interpolation) or with a minimum of additional information  
(nearest-projection mapping). A flexibilization of the mapping 
concept to facilitate also customized mapping, e.g., for 
high order spatial discretizations, is work in progress and  
will be provided in future versions. 

In the following subsection, we shortly describe the types 
of data mapping implemented in preCICE and give some  
results showcasing their performance and accuracy.

Let the dimension of the scenario d be two or three and let us  
consider a data mapping from the coupling mesh of participant  

1k ≥ 1. A plain or underrelaxed fixed-point iteration can be used to start the procedure.

2corresponding to the coefficient vector α
k
 = −

T

k
V  (V

k

T

k
V )−1 R(xk).
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S1 to the coupling mesh of participant S2. The minimum mesh  
information required (during initialization) is the vertex coordi-
nates of both meshes, which we define as:

{ ,..., } with , { ,..., } with .= ∈ = ∈� � � � � �� �d d
n nx x x x x x1 1 2 2 2
1 21 2

1
1 1

SSS S S S
S Si iM M

Data mapping aims to map the vector ( , ,..., )=
�S S S S T

nv v v v
1 1 1 1

1 2 1
 of 

values at the vertices in M
S1

 to the vector ( , ,..., )=
�S S S S T

nv v v v
2 2 2 2

1 2 2
 

of values at the vertices in M
S2

.

All data mapping methods in preCICE are provided in a  
consistent and in a conservative variant. Consistent mapping 
operations exactly reproduce constant data at M

S1
 on M

S2
. 

Conservative mapping methods preserve the sum of all val-
ues. Consistent mapping schemes are, thus, used for physi-
cal variables such as displacements, velocities, pressure, or 
stresses, whereas conservative methods have to be used for  
cumulative variables, such as forces. Note that higher-order 
consistency or more sophisticated conservation properties like  
conservation of integral values in the particular higher-order 
finite element basis of a solver is currently not feasible due to  
the black-box character of the mapping. However, the above-
mentioned ongoing flexibilization is going to help tackle this  
restriction as well.

Data mapping can be written as a linear mapping

=� �1 2S S
Mv v

with a matrix M ∈ ℝn2 × n1. For a consistent mapping, the sum 
of entries in each row of the mapping matrix M has to be one,  
whereas, for a conservative mapping, the requirement is 

=∑ ∑1 2S S
i iii

v v , and thus, the sum of entries in each column of 
M has to be one. Therefore, conservative mapping methods are  
generated by transposing the mapping matrix of a consistent 
mapping. Throughout this section, we restrict our explanation  
to consistent data mapping. For details on both variants, the  
reader is referred to mapping-focused publications14,16,50.

3.2.1 Projection-based data mapping. Two projection-based  
mappings are available in preCICE: nearest-neighbor and  
nearest-projection. The nearest-neighbor mapping establishes 
an association between each vertex 

�
2S

ix  of the output mesh 
M

S2
, with the spatially nearest vertex 

( )

�
1S

j i
x  on the input mesh  

M
S1

.

The mapping is then simply defined as

( ) .= 12 SS
j ii

vv

The nearest-projection mapping uses connectivity information 
between multiple vertices on the input mesh to interpolate to 
a vertex on the output mesh. To calculate the value at an output  
vertex 

�
2S

jx , we calculate a projection point p(
�

2S
jx ) on the entities 

of the input mesh, interpolate a value to this projection  
point, and copy this to the output vertex 

�
2S

jx . The projection  
point  p(

�
2S

jx ) is a projection on a triangle of the input mesh  
defined by participant S

1
. If such a triangle does not exist, we 

determine p(
�

2S
jx ) via orthogonal projection to an edge in the  

coupling mesh of participant S1 or, as the last option, as the  
closest vertex in the mesh of participant S1. This requires a  
search operation over triangles and potentially edges and verti-
ces of the mesh of participant S

1
 for each output vertex 

�
2S

jx . See  
Figure 4 for the relation between mesh entities of the two  
meshes. In the second step of the mapping, we use barycen-
tric interpolation (if p(

�
2S

jx ) is in a triangle), linear interpolation  
(if p(

�
2S

jx ) is on an edge) or the respective vertex value (if  
p(
�

2S
jx ) is a vertex) to determine a value at p(

�
2S

jx ) and then use 
this value as 2S

jv  at the output point. In other words, the inter-
polation is a combination of a second-order accurate interpola-
tion inside a triangle in S1 and a first-order accurate extrapolation  
in normal direction, i.e., the error is O(h2) + O(δ) with the mesh 
width h of the mesh of S1 and the normal distance δ between  
the two coupling meshes. In cases where the mesh of participant 
S1 does not provide suitable mesh connectivity information, a  
simple projection onto the closest vertex is performed, i.e., the  
nearest-projection mapping falls back to nearest-neighbor.

Figure 4. Basic principles of nearest-neighbor and nearest-projection mapping: (a) Transfer of each value ( )
1S

j i
v  at the nearest 

neighbor 
( )

�
1S

j i
x  in the coupling mesh of S1 to the vertex � 2S

ix  in the coupling mesh of S2. (b) Projection of points � 2
1
Sx , � 2

2
Sx  and � 2

3
Sx   

of the coupling mesh of S2 to a triangle, an edge, and a vertex, respectively, of the coupling mesh of S1.
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Both nearest-neighbor and nearest-projection mapping require 
neighbor search between mesh entities of both participants. 
To implement this search efficiently, we generate r-start  
index-trees for vertices, edges, and triangles of meshes using 
the Geometry package of Boost3. The complexity of generating 
the index tree is O(n log(n)) and the complexity of each nearest  
neighbor query is O(log(n)) if n is the number of entities in the 
involved meshes.

3.2.2 Data mapping with radial basis functions. Radial basis 
function (RBF) mapping uses a linear combination of radially  
symmetric basis functions centered at vertices 

�
1S

ix  of the 
input mesh to create a global interpolation function, which is  
afterwards sampled at the vertices of the output mesh 

�
1S

ix . In 
order to ensure that constant and linear functions are interpolated  
exactly, an additional global first-order polynomial term q(

�
x) is 

added to the interpolant s : ℝd → ℝ:

( )
=

( ) = || || ( ) ,⋅ − +∑� � � �
¸ Á q

1
1

2
1

S
n

ii
i

s x x x x

where the radial basis function is given by ϕ, and the poly-
nomial term q(�x) = β0 + β1x1 + . . . + β

d
x

d
. Several basis func-

tions available in preCICE are listed in Table 1. See Figure 5 
for a schematic view of the relation between the vertices of  

both coupling meshes and the construction and evaluation of the  
interpolant.

The set of coefficients λ
i
 ∈ ℝ, i = 1, ..., n

S1
 is determined such  

that the interpolation conditions

( ) = = 1, ,∀�
…1 1

1
S S
i is x v i n

are fulfilled. The addition of the polynomial term leads to an 
under-determined system which is regularized by the polynomial  
conditions

and .
= =

⋅ = =∑ ∑�S S
n n

¸ ¸S
ii i

i i

x
1

1 1
1

1
0 0

In matrix notation, this leads to the linear system

,T β

    
=           

� �
� �

C Q ¸

Q

1

0

S
v

0

where 
�
¸  = (λ1, λ2, . . . , λ

n1)
T, β = (β0, β1, . . . , β

d
)T, 

( )( )
, ,, =

|| ||= −
…

� �
Á 1 1

1
2

1

S S
i j

ji n
C x x  ∈ ℝn1 × n1,

and ( ),, , ,
, , ,

=
=

…
…Q 1 1

1
1 1

1 S S
di i i n

x x  ∈ ℝn1 × (d +1)

Table 1. Radial basis functions available in preCICE (excerpt). Local basis functions 
have a support radius r, i.e., ϕ (|| ||

�
x 2) = 0 for || ||

�
x 2 > r. C-TPS use normalized variables  

ξ = || ||
�
x 2/r and are set to zero for ξ > 1. We enforce a finite support radius for Gaussians 

by setting the basis function to zero when falling below a threshold of 10−9 51. For a given 
support r, we can, thus, compute the necessary shape parameter ζ.

Basis Function Support

Gaussians exp(−(ζ·|| ||
�
x )2) Local

Global Thin Plate Splines (G-TPS) || ||
�
x 2 log(|| ||

�
x ) Global

Compact Thin Plate Splines C2 (C-TPS) 1 − 30ξ2 − 10ξ3 + 45ξ4 − 6ξ5 − 60ξ3 log ξ Local

Figure 5. Simplified one-dimensional view of the generation of the interpolant and the evaluation at the target point 
�

2S
ix   

based on a linear combination of Gaussian basis functions with support radius r, neglecting the global polynomial.

3Boost C++ libraries: https://boost.org/.
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and, finally, the mapping reads

( ) T

−   
=        

�� � � �
C Q

C Q
Q

1
2

1

0

S
S v

v
0

with ( )( ) , ,
, ,

=
=

|| ||= − …
…

� �� Á 2 1

2
1

2 1
1

S S
i j i n

j n

C x x  ∈ ℝn2 × n1, 

( ),, , , ,
, , ,

=
=

…

�Q 2 2 2

2
21 3 1

1 S S S
i i i i n

x x x  ∈ ℝn2 × 4.

Local basis functions result in a sparse matrix C. However, the 
polynomial term matrix Q is always densely populated, which 
hampers the favorable properties of the sparse matrix. Solv-
ing the polynomial term separately in a least squares approach 
via QR-decomposition of the matrix Q capitalizes on the spar-
sity of the matrix C. For a full description of this separated  
polynomial approach, a separate publication is available51.

As radial basis functions are radially symmetric in all spatial 
dimensions, distances between the two involved coupling meshes 
normal to a coupling surface do not have to be explicitly tack-
led, in contrast to the nearest-projection method. However, the 
accuracy of the RBF mapping decreases with an increasing  
gap or overlap between the two meshes of S1 and S2. In addi-
tion, the RBF mapping with local basis functions suffers from a 
trade-off between high accuracy (achieved for basis functions  
with wide support) and feasible conditioning of the linear  
system (only given for moderate support width). We address the 
latter to some extent by scaling the interpolant with the inter-
polant of the constant unit function, which allows us to use a  
smaller support radius without deteriorating accuracy51,52.

The RBF data mapping is implemented using either (depend-
ing on configuration) an iterative generalized minimal residual 
method (GMRES) solver from PETSc53 in every mapping step, 
or an initial dense QR-decomposition from Eigen54 followed 
by a matrix-vector product and a backward substitution in every 
mapping step. While the GMRES solver is fully parallelized, the 
QR-decomposition uses a sequential computation on a single  
rank. 

The RBF mapping as described here is consistent, i.e., 
exactly reproduces constant input if the interpolation problem  
is solved exactly. In this case, the constant part of the poly-
nomial is the exact and correct solution. Otherwise, we get  
consistency only up the solver accuracy of the GMRES solver. 
Similar arguments hold for the conservative variant which 
is realized by a formal transposition of the mapping matrix  
translated into respective solver steps16.

3.2.3 Numerical and runtime performance. We compare 
the various data mapping methods in terms of accuracy and  

computational demand using the Artificial Solver Testing  
Environment (ASTE)4. ASTE imitates data input and out-
put of participants coupled via preCICE in an artificial set-
ting. In our test setup, two ASTE participants, S1 and S2, are 
coupled via preCICE. Both define individual surface meshes  
of the same geometry. We then use an analytical test function,

( ) . cos ( ( )) ,= + ⋅ + +�
1 2 30 78 10f x x x x

to set values on M
S1

. We compute a single consistent mapping 
from M

S1
 to M

S2
 and measure errors on M

S2
 with a discrete  

l2-norm, 

( ) .( )
=

 
−  ∑ �2 2

1
22

1

1 S S
n

ii
i

v f xn

As test geometry, we use a wind turbine blade5. We use GMSH55  
to generate almost uniform surface meshes with different 
resolutions as listed in Table 2. In Figure 6, we visualize the  
geometry, different meshes, and the test function.

We run the mapping tests on the thin-nodes partition of  
SuperMUC-NG, hosted at the Leibniz Supercomputing Centre.  

4ASTE branch used for these tests: https://github.com/precice/aste/tree/mapping-tests

5Wind Turbine Blade created by Ivan Zerpa https://grabcad.com/library/wind-turbine-blade--4

Table 2. The meshes used for the mapping 
tests sorted from coarse to fine. Bold 
typesetting indicates the output meshes 
(associated to participant S2). All other meshes 
are used as input meshes (associated to 
participant S1).

h Vertices Triangles Series

0.03 438 1007 coarse

0.02 924 2027 coarse

0.01 3458 7246 coarse

0.009 4302 8970 coarse

0.008 5310 11025 coarse

0.006 9588 19712 coarse

0.004 21283 43352 fine, coarse

0.003 38112 77271 fine

0.002 84882 171319 fine

0.0014 172803 347815 fine

0.001 338992 681069 fine

0.0007 691426 1387249 fine

0.0005 1354274 2714699 fine
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Each thin-node contains two 3.1GHz Intel Xeon Platinum 
8174 (SkyLake) processors with a total of 48 cores and 96GB  
of system memory per node. The tests used the Intel Omni-Path  
interconnect as primary network connection. We run partici-
pant S1 on a single node (48 MPI ranks) and participant S2 

on two nodes (96 MPI ranks) as participant S2 computes the 
actual mapping. Runtime is the maximum of a given event over  
all ranks of S2

6 and memory is the sum of the peak memory 
usage of all ranks of S2. These results are in addition aver-
aged over five runs. For the RBF data mapping variants, we use 
GMRES as a linear solver with a relative convergence thresh-
old of 10−6, except for G-TPS, where we use the sequential  
QR-decomposition.

We compare the data mapping methods in two series of com-
putations. The first, coarse series is based on meshes with  
h ≥ 0.004, where participant S2 always uses h = 0.009 and par-
ticipant S1 varies the value of h through all other values of the 
series listed in Table 2. The second, fine series is based on meshes  
with h ≤ 0.004. Participant S2 uses h = 0.00014 and partici-
pant S1 the rest. While we can compare all mapping variants for 
the coarse series, RBF data mapping with G-TPS is too expen-
sive in terms of computation and memory for the fine series. 
For reproduction of our results, all data used as well as all  
steps are available in a data repository56.

Figure 7 gives results for RBF data mapping with local basis 
functions – C-TPS and Gaussians – for varying support radii 

and for integrated and separated handling of the global polyno-
mial. Separated handling of the polynomial clearly outperforms 
integrated handling in terms of accuracy and robustness. For  
C-TPS, an increase in accuracy is observed for increasing  
support radius. This is even true for rather large radii (r = 20h), 
where we get more than quadratic convergence. Gaussians, 
however, show robustness issues for larger support radii. We 
assume that this behavior is caused by the increasing ratio of 
large to small matrix entries. In a further test (not shown here), 
we observed that increasing the (hard-coded) threshold value  
from 10−9 to 10−5 seems to improve robustness.

Figure 8 sets the best local RBF variants in perspective with  
RBF mapping using G-TPS, nearest-neighbor mapping, and near-
est-project mapping. RBF mapping using C-TPS with a large 
support radius is comparable to RBF mapping using G-TPS.  
The latter only wins for the finest meshes. RBF data mappings 
clearly outperform nearest-neighbor and nearest-projection 
mapping – even for a relatively small support radius of h = 3r.  
Nearest-projection mapping, interestingly, does not show a  
constant second-order convergence for the coarse series, which 
suggests that the projection error dominates the interpolation  
error. In fact, similar tests with a cubic geometry (not shown) 
give constant second-order convergence for nearest-projection 
mapping as, in this case, all meshes directly lie on the geometry 
(i.e. no projection error). For the fine series, nearest-projection  
mapping gives a rather constant second-order convergence  
as well.

Figure 6. Mapping test case: Different meshes of the turbine-blade test geometry. From left to right: the geometry used to generate 
the meshes, h = 0.03, h = 0.009, h = 0.004, h = 0.0005 without edges. The mesh surface color indicates the test function, edges are drawn 
in black.

6preCICE measures timings for a wide range of events across MPI ranks using the precice/EventTimings framework.
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Next, we compare the same methods in terms of compute 
time. Here, we have to distinguish between one-time prepara-
tion time (e.g., QR-factorization, matrix initialization in PETSc, 
or nearest-neighbor search) and recurrent mapping time in 
every mapping operation (e.g., back substitution or GMRES  
solve). Figure 9 and Figure 10 give both data for various data 
mapping methods and the coarse and fine series, respectively. 
The quickly increasing preparation time of RBF mapping 
with G-TPS makes the method unpractical for finer meshes.  
For C-TPS, both the preparation time and the recurrent mapping  
time increases significantly with increasing support radius 
and decreasing mesh width. For fine meshes, larger sup-
port radii are thus discouraged despite their superior accuracy. 
For small cases, the overhead of the PETSc solver for RBF is 
more costly than the overall serial QR-factorization in G-TPS. 
Nearest-neighbor and nearest-projection mapping are both  

drastically cheaper than RBF data mapping, particularly in the 
recurrent mapping time. Finally, Figure 11 compares the peak 
memory consumption of all data mappings. RBF mapping with  
G-TPS shows a drastic increase in memory with increasing 
mesh size. For the coarse series, all methods show the expected 
behavior: higher memory consumption for RBF than for  
nearest-neighbor and nearest-projection mapping and increas-
ing memory consumption for RBF mapping using C-TPS with 
increasing support radius. For the fine series, the nearest-project 
surpassed even the RBF methods, due to the additional cost of  
handling connectivity information.

We conclude that RBF data mapping with local basis functions  
is a useful method. There is a natural trade-off between  
accuracy and compute effort when modifying the support radius. 
A good compromise is a support radius of r = 5h to r = 7h. In 

Figure 8. Comparison of nearest-neighbor / nearest-projection mapping and RBF mapping with G-TPS and C-TPS for coarse 
series (left) and fine series (right) from Table 2. RBF mapping with G-TPS is infeasibly expensive for the fine series. All RBF mapping 
methods use a separated handling of the polynomial. Participant S2 uses h = 0.009 for the coarse series (left) and h = 0.0014 for the fine 
series (right).

Figure 7. RBF data mapping with local basis functions for coarse series. Comparison of various support radii (left) and integrated and 
separated handling of the global polynomial (right). Participant S2 uses h = 0.009. Missing data points mark diverging cases. Gaussians with 
r = 7h or r = 10h diverge for some or all cases, respectively (left). With integrated handling of the polynomial, both basis functions diverge 
for r = 5h and coarser meshes (right).
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the current implementation, C-TPS should be preferred over 
Gaussians as basis functions. RBF mapping with G-TPS should 
only be used for rather coarse input meshes (number of ver-
tices smaller than 1000). When RBF data mapping becomes 
too expensive, nearest-projection mapping is a good alterna-
tive except for very large out-of-memory cases. Scalability 
results for the mapping computation were recently published  
in 21. In future work, we aim for a more in-depth analysis of  
mapping variants with further geometries.

3.3 Communication
Besides coupling schemes and data mapping, the third feature 
pillar of preCICE is inter-code communication. For large-scale  
simulations on massively-parallel high-performance computing  
systems, efficient inter-code communication is a necessity.  

Employing any central instance not only deteriorates the  
communication performance, but can also be memory prohibitive 
when large amounts of data must be communicated. Therefore,  
preCICE implements fully-parallel point-to-point communi-
cation15,17,57. In the initialization phase, preCICE performs an 
analysis of the coupling mesh partitions and the defined data 
mappings of each connected pair of participants to find the list 
of required connections between the MPI ranks of either partici-
pant (cf. Figure 12). To this end, bounding boxes around mesh 
partitions are compared in a first step, leading to preliminary 
communication channels. In a second step, actual mesh data is  
compared in a fully-parallel fashion21.

As communication backends, preCICE supports MPI and TCP/IP.  
In general, communication via MPI is faster16. However,  

Figure 10. Comparison of one-time preparation time (left) and the recurrent mapping time (right) of various data mapping 
methods for the fine series. All RBF mapping methods use a separated handling of the polynomial. The one-time preparation of the 
nearest-neighbor mapping is an inexpensive operation and has the tendency to fluctuate, five samples are not enough to fully smooth 
them out resulting in a spike at 0.001. The recurrent mapping time of nearest-projection and nearest-neighbor mapping is below the 
measurement resolution of 1ms and hence omitted. Participant S2 uses h = 0.0014.

Figure 9. Comparison of one-time preparation time (left) and the recurrent mapping time (right) of various data mapping 
methods for the coarse series from Table 2. All RBF mapping methods use a separated handling of the polynomial. The recurrent 
mapping time of nearest-projection and nearest-neighbor mapping is below the measurement resolution of 1ms and hence omitted. 
Participant S2 uses h = 0.009.
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TCP/IP communication is more robust and flexible, since not 
all MPI implementations support the necessary inter-code MPI  
functionality57. For MPI-based communication, preCICE cre-
ates a single inter-code communicator including all involved 
ranks from both participants. To establish TCP/IP-based con-
nections, on the other hand, each pair of connected ranks 
exchanges a connection token via the file system. To reduce 
the load on the file system, a hash-based scheme is used, which  
distributes the connection files uniformly across different  
directories6,16. 

3.4 Getting and building preCICE
After introducing the basic coupling methods implemented in 
preCICE in the last three sections, we now give an overview of 
various ways to get preCICE. The GitHub repository7 is the  
central platform for development, issue tracking, and contribut-
ing. It provides the release timeline with release notes, automatic 
source archives, and build artifacts. However, the repository  
only contains the preCICE library and native (C and Fortran)  
language bindings. Additional derived software is hosted in 
separate repositories under the preCICE GitHub organization: 
adapter codes, tutorials, Python and MATLAB language bindings,  
and more. All these components, together with the core library, 
are part of the preCICE distribution8, a versioned and citable  
ecosystem of components that are meant to work together 
and are maintained by the preCICE developers. Everything 
presented in this paper refers to the version v2104.0 of the  
distribution19.

On the other hand, the preCICE library also depends on vari-
ous other libraries for a range of features. See Table 3 for an 
overview of dependencies and their associated features in  
preCICE.

A decision graph for getting preCICE is shown in Figure 13.  
We describe the different options in the following.

Debian packages for preCICE on Ubuntu Due to the popular-
ity of Ubuntu among preCICE users, we provide corresponding  
Debian packages. We aim to support the latest two Ubuntu  
long term support (LTS) releases, which is frequency-wise  
compatible with our strategy to not release new major versions 
(breaking changes) more often than every two to three years. 

Figure 11. Comparison of the maximum overall memory consumption of various data mapping methods for coarse series (left) 
and fine series (right) from Table 2.  Participant S2 uses h = 0.009 for the coarse series (left) and h = 0.0014 for the fine series (right). The 
memory consumption is the maximum of all ranks of participant S2, which is executing the mapping.

Figure 12. Communication initialization in preCICE. Given the 
distribution of vertices among the ranks of parallel participants 
iS1  and j

S2 , combined with a data mapping between the vertices 
shown in the middle, preCICE deduces the required communication 
pattern of ranks between participants S1 and S2, depicted as the 
gray connections.

7preCICE repository on GitHub: https://github.com/precice/precice

8preCICE distribution: https://precice.org/installation-distribution.html
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The Debian packages contained in our GitHub releases allow  
one-click installation on supported platforms. This avoids 
explicit dependency management by the user. The current Debian 
package is always generated for the latest Ubuntu release as  
well as the latest Ubuntu LTS.

Building preCICE using Spack In addition, we maintain a  
Spack58 package which allows to build the complete required 
software stack from source code. This is essential to be able 
to test arbitrary combinations of dependency versions and  

different compilers. We actively maintain a build recipe with  
common configurations. Moreover, preCICE is a member of the  
Extreme-scale Scientific Development Kit (xSDK)9 since  
xsdk-0.5.0 (November 2019)10, which promises compatibility  
to other major scientific computing packages.

Building preCICE with CMake For other platforms, we provide  
an in-depth guide on how to build preCICE from source.  
For cross-platform build system configuration, preCICE lev-
erages CMake. It allows users and developers to develop 

Table 3. Dependencies of preCICE and associated features in preCICE.

Dependency Version CMake Option Features

Boost Geometry ≥ 1.65.1 required Spacial index trees

Boost Container ≥ 1.65.1 required Flat maps and sets

Boost Stacktrace ≥ 1.65.1 required Stacktrace information

Boost Log ≥ 1.65.1 required Configurable logging

Boost Test ≥ 1.65.1 required Base of testing framework

Eigen 3 required Mesh representation and 
radial basis function mapping.

libxml 2 required Parsing of XML config files.

PETSc ≥ 3.6 PRECICE_PETScMapping Parallel RBF mapping.

Python ≥ 3.6 PRECICE_PythonActions User-defined actions

NumPy ≥ 1.18.1 PRECICE_PythonActions User-defined actions

MPI MPI-3 PRECICE_MPICommunication MPI communication back-end

Figure 13. Decision graph and overview of the different installation methods for preCICE on Linux. On macOS, users can build 
using Spack, or install dependencies from Homebrew and build from source. On Windows, preCICE is available from MINGW (experimental), 
while it can also work inside the Windows Subsystem for Linux. Before deciding to install preCICE on their system, users can try a virtual 
machine containing all the software needed to run the preCICE tutorials.

9xSDK: http://xsdk.info/

10See https://github.com/xsdk-project/xsdk-policy-compatibility/blob/master/precice-policy-compatibility.md for more details on all policies fulfilled by preCICE.
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and build in their environment of choice. The adoption of 
CMake simplifies package generation and the future support 
of Windows and macOS. macOS works out-of-the-box since  
preCICE v2.2. There are several ways to support Windows: 
Since v1.x, there is community support via MinGW. Windows 
users can also install preCICE on the WSL (Windows Sub-
system for Linux) normally. We are currently preparing native  
Windows support (MSVC compiler), in addition.

preCICE demo virtual machine Before running their first cou-
pled simulation, a user needs to install not only the preCICE 
library, but also a minimum set of adapters and third-party solv-
ers. This can become even more complicated if the user does 
not already work on a platform compatible with all components. 
To lower the entry barrier, we provide a virtual machine (VM) 
image with all components needed to run the preCICE tutorials.  
We create11 and distribute12 this image as a Vagrant13 Box, 
which is currently available for VirtualBox, but could easily be  
packaged for other providers as well. We chose Vagrant instead 
of a provider-specific system, as Vagrant allows us to highly 
automate the box generation, integrates with the host system 
automatically (SSH access, shared folders), provides infra-
structure to distribute the box, and works with various host plat-
forms and virtualization providers. We chose a VM instead of 
a container-based system, as virtual machines provide access 
to a full graphical environment by default and many users in 
our community already have experience working with virtual  
machines, but not with containers.

3.5 Application programming interface and 
configuration
Now that we know which coupling methods preCICE offers 
and how to get preCICE, we show in this section how preCICE  
can actually be used.

Even though preCICE is a C++ library, it also supports other 
programming languages, as shown in Table 4. Alongside the 
native application programming interface (API) for C++,  
preCICE provides C and Fortran bindings by default. The API 
for other languages is provided via independent projects, as 
they follow different release cycles, different project manage-
ment, and different developer and installation procedures. Python 
bindings are based on Cython, installable via pip from PyPI.  
MATLAB bindings59 are based on the MEX interface and 
Julia bindings are currently in the prototype phase. Finally, we 
develop an independent Fortran module for easier integration 
of preCICE into Fortran codes. The architecture and relation  
between these projects is described in the documentation14. 
All language bindings also provide so-called solverdummies as 
example codes and provide pkg-config and CMakeConfig  
files for integration into other projects.

To introduce the API of preCICE, we use an example: we 
develop an adapter for a fluid solver written in Python to couple 
it to an already adapted solid solver for fluid-structure interaction  
(FSI). Mathematically, we realize a Dirichlet-Neumann cou-
pling: we use the kinematic interface condition as Dirichlet 
boundary condition in the fluid solver and the dynamic interface 
condition as Neumann boundary condition in the solid solver.  
Thus, concerning coupling data, we receive the deforma-
tion of the solid from the solid solver as displacement values at 
the coupling interface and we return forces on the coupling  
interface to the solid solver. This example problem is repre-
sentative for many preCICE users: an existing (in-house) fluid 
solver should be coupled to an off-the-shelf solid solver, which 
is already adapted for preCICE. The simplified code of the 
uncoupled fluid solver is depicted in Listing 1. u is the current  
solution, for example velocity and pressure values. We use 
an adaptive time step size, computed in line 3, and solve one  
time step in line 4.

Table 4. Programming languages supported by preCICE. CMake options for C and 
Fortran bindings are set to ON by default.

Language Location Installation

C++ precice/precice native API

C precice/precice cmake -DPRECICE_ENABLE_C=ON .

Fortran precice/precice cmake -DPRECICE_ENABLE_FORTRAN=ON .

Fortran Module precice/fortran-module make

Python precice/python-bindings pip install pyprecice@2.0.2

MATLAB precice/matlab-bindings MATLAB script

Julia precice/julia-bindings Julia package (experimental)

11preCICE VM sources: https://github.com/precice/vm

12preCICE Vagrant box: https://app.vagrantup.com/precice/precice-vm documentation: https://precice.org/installation-vm.html

13Vagrant: https://github.com/hashicorp/vagrant

14API documentation overview: https://precice.org/couple-your-code-api.html
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Creating a handle to preCICE Listing 2 shows the fully-coupled  
fluid solver. The preCICE API is used at multiple locations, 
which we explain in the following paragraphs. For the sake of  
simplicity, we do not develop a general stand-alone adapter,  

Listing 2. An adapted fluid solver written in Python. While preCICE is a C++ library, bindings for C++, C, Fortran, Python, and MATLAB 
make it possible to couple a large variety of participants in a minimally invasive way.

Listing 1. Original uncoupled fluid solver in Python.

but directly use the preCICE API in the fluid code – meaning, 
we develop an adapted code. In Section 4, we give an overview  
of several real adapters. As the fluid code is written in Python, 
we make use of the Python bindings of preCICE: preCICE is  

1 u = initialize_solution()
2 while t < t_end: # main time loop
3     dt = compute_adaptive_dt()
4     u = solve_time_step(dt, u) # returns new solution
5     t = t + dt

 1 import precice
 2
 3 interface = precice.Interface("Fluid", "precice-config.xml", 0, 1)
 4
 5 mesh_id = interface.get_mesh_id("Fluid-Mesh")
 6
 7 displ_id = interface.get_data_id("Displacement", mesh_id)
 8 force_id = interface.get_data_id("Force", mesh_id)
 9
10 positions = ... #define interface mesh, 2D array with shape (n, dim)
11 vertex_ids = interface.set_mesh_vertices(mesh_id, positions)
12
13 precice_dt = interface.initialize()
14
15 u = initialize_solution()
16
17 while interface.is_coupling_ongoing(): # main time loop
18
19     if interface.is_action_required(precice.action_write_iteration_checkpoint()):
20         u_checkpoint = u
21         interface.mark_action_fulfilled(precice.action_write_iteration_checkpoint())
22
23     # returns 2D array with shape (n, dim)
24     displacements = interface.read_block_vector_data(displ_id, vertex_ids)
25
26     dt = compute_adaptive_dt()
27     dt = min(precice_dt, dt)
28     u = solve_time_step(dt, u, displacements) # returns new solution
29
30     # returns 2D array with shape (n, dim)
31     forces = compute_forces(u)
32     interface.write_block_vector_data(force_id, vertex_ids, forces)
33
34     precice_dt = interface.advance(dt)
35
36     if interface.is_action_required(precice.action_read_iteration_checkpoint()):
37         u = u_checkpoint
38         interface.mark_action_fulfilled(precice.action_read_iteration_checkpoint())
39     else: # continue to next time step
40         t = t + dt
41
42 interface.finalize()
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imported in line 1. In line 3, the solver interface of preCICE 
is created. We pass the name of the solver and the preCICE  
configuration file. The latter defines the overall coupling topol-
ogy (who is coupled to whom) and the used coupling meth-
ods (acceleration, data mapping, communication, etc.). We  
come back to this file later. Moreover, for parallel coupled 
codes, we need to give the current parallel rank (here 0) and 
the number of ranks (here 1) to preCICE. The solver inter-
face is initialized in line 13. Here, preCICE performs several 
first steps, such as setting up internal data structures and creat-
ing communication channels. In the end, the solver interface is 
finalized in line 42. Internal data structures are torn down and  
communication channels are closed.

Coupling meshes Coupling data and coupling meshes are 
referred to by IDs, which are collected in lines five to eight. The  
coupling mesh is defined before the initialization in line 11.  
preCICE treats coupling meshes as (unstructured) clouds of  
vertices, arranged in two-dimensional arrays of size vertices by  
dimension. Certain features of preCICE (e.g., nearest-projection  
data mapping) require mesh connectivity, in addition. To this  
end, edges, triangles, and quads can optionally be defined, a step 

which we do not show in this example. The control of the end  
of the simulation is handed over to preCICE in line 17 to steer 
a synchronized end of all participants. On the coupling mesh, 
coupling data structures are accessed in lines 24 and 32. The  
example uses specific calls for the vector-valued displace-
ment and force values. The displacement values are used as  
Dirichlet boundary condition, here depicted as additional 
input of solve_time_step in line 28. The force values are  
computed from the current solution by means of a helper function  
in line 31.

Configuration Listing 3 gives an excerpt of a preCICE 
configuration for our FSI example. The dimension of the  
scenario is specified in line 1 and can be either 2 or 3. Two 
participants, Fluid and Solid, are configured. Fluid  
uses the mesh from Solid in line 13. This way, we can define 
data mappings between both meshes in lines 16 and 17. Here, 
we use RBF data mappings with compact thin-plate splines 
as basis functions. In line 22, we configure a TCP/IP sockets  
connection between both participants. Finally, in lines 24 to 31,  
a serial implicit coupling between both participants with an  
IQN-ILS acceleration is defined. Fluid is the first participant, 

Listing 3. Excerpt of a preCICE configuration file. Two participants Fluid and Solid are coupled.

 1 <solver-interface dimensions="3">
 2   <data:vector name="Force"/>
 3   <data:vector name="Displacement"/>
 4
 5   <mesh name="Fluid-Mesh">
 6     <use-data name="Displacement"/>
 7     <use-data name="Force"/>
 8   </mesh>
 9   <mesh name="Solid-Mesh"> ... </mesh>
10
11   <participant name="Fluid">
12     <use-mesh name="Fluid-Mesh" provide="yes"/>
13     <use-mesh name="Solid-Mesh" from="Solid"/>
14     <write-data name="Force" mesh="Fluid-Mesh"/>
15     <read-data name="Displacement" mesh="Fluid-Mesh"/>
16     <mapping:rbf-compact-tps-c2 from="Fluid-Mesh" constraint="conservative"/>
17     <mapping:rbf-compact-tps-c2 from="Solid-Mesh" constraint="consistent"/>
18   </participant>
19
20   <participant name="Solid"> ... </participant>
21
22   <m2n:sockets from="Fluid" to="Solid" />
23
24   <coupling-scheme:serial-implicit>
25     <participants first="Fluid" second="Solid"/>
26     <time-window-size value="1e-3"/>
27     <exchange data="Force" mesh="Solid-Mesh" from="Fluid"/>
28     <exchange data="Displacement" mesh="Solid-Mesh" from="Solid"/>
29     ...
30     <acceleration:IQN-ILS> ... </acceleration:IQN-ILS>
31   </coupling-scheme:serial-implicit>
32 </solver-interface>
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meaning that it starts each iteration. preCICE comes with a 
standalone Python tool called Config Visualizer15, which helps 
understanding and debugging preCICE configuration files. 
The tool generates graphviz dot files60, which can be, for exam-
ple, converted to PDF. The generated PDF output is shown in  
Figure 14 for the example configuration.

Coupling flow The actual coupling between participants  
happens within the single preCICE API function advance, line 34  
in Listing 2. This includes communication, mapping, and accel-
eration of coupling data – whatever methods are defined in 
the preCICE configuration. To better understand the order and 
relation of individual coupling steps, Figure 15 depicts the 
overall coupling flow when using the example configuration  
of Listing 3. For this visualization, we further assume that 
both participants use identical time step sizes. During the ini-
tialization, Solid-Mesh is sent from Solid to Fluid. A 
serial coupling scheme leads to a staggered execution of both  
participants: one after the other. This implies, in particular, 
that the behavior of both participants within the preCICE API 
functions cannot be symmetric. In the example, Fluid is the  
first participant of the coupling scheme. This means that, after 
the first time step of Fluid, the first advance sends force  
values to Solid, as can be seen in the figure. This coupling data 
is, however, already received in initialize of Solid, such 
that the solver can use it in its first time step. The first displace-
ment values are then sent at the start of the first advance of  
Solid and received at the end of the first advance of Fluid. 
Data is mapped in both direction within advance of Fluid. 
Convergence acceleration of the coupling iteration is always 
executed in advance of the second participant, here Solid.  
Please note that a different preCICE configuration could 
lead to a completely different order and relation of steps: the 
roles of first and second could be swapped, one or both data  
mappings could be computed on Solid, or the serial coupling 
scheme could be replaced by a parallel one, to only name a few 
choices. All these changes can be configured at runtime. The 

adapted fluid code in Listing 2 remains unchanged – and would 
remain unchanged even if Solid would be coupled with a third  
participant.

Timestepping So far, we assumed that the coupled partici-
pants use matching time step sizes. preCICE is, however, also 
able to handle non-matching time step sizes. Then, data is only 
exchanged at the end of each time window, defined in the preCICE  
configuration, line 26 of Listing 3. Alternatively, the time window 
size can also be imposed by the first participant. If a solver uses 
a smaller time step size than the time window size, it subcycles 
within the time window. This means, in particular, that the same 
coupling data is used throughout the time window, which can 
reduce the time discretization order of the coupled codes. We are  
currently working on a higher order time representation of  
coupling data to sample from, a coupling procedure known as 
waveform iteration40. To allow preCICE to track the time of a 
solver, the current time step size needs to be passed to preCICE  
in advance, cf. line 34 in Listing 2. preCICE then returns the 
remaining time within the current time window, which the cou-
pled solver has to respect. Therefore, in line 27, the solver’s  
time step size is restricted, if required.

Implicit coupling We still need to explain how implicit cou-
pling is realized. Please remember that by implicit coupling we 
mean the repetition of time windows until sufficient convergence 
of coupling data (cf. Section 3.1). To this end, a coupled solver 
needs to be able to move backwards in time, which we realize  
by writing and reading checkpoints of the complete internal 
solver state (lines 20 and 37 in Listing 2). Writing checkpoints  
is required when entering time windows for the first time and  
reading checkpoints is required at the end of a time window, 
whenever convergence is not achieved. As the solver does not 
know anything about the coupling scheme, preCICE tells the 
solver when it is time to write and read checkpoints in lines 19 
and 36. At the end of the loop body, time is only increased when 
convergence is achieved, in line 40. Please note that, with this 

Figure 14. Auto-generated visualization of the preCICE configuration of Listing 3 using the Config Visualizer of preCICE.

15preCICE config visualizer: https://github.com/precice/config-visualizer
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checkpointing mechanism, nested time and coupling loops are 
not necessary, but everything can be handled within one while  
loop.

Help and further information We cannot explain all preCICE 
API functions and all configuration options with this single 
example. Please also consider the official user documentation16,  
which includes complete API and configuration references.  
preCICE supports adapter development by extensive san-
ity checks of correct API usage – a simple example: advance  
cannot be called before initialize. Moreover, the preCICE  
configuration is checked against the configuration reference and  
extensive logging is configurable.

4 Official adapters
A library such as preCICE can only live as part of an applica-
tion (a solver) that calls it. To call preCICE, the solver needs to 
contain code that knows how to interact with the library. We  
saw in Section 3 that this additional code is short, but the user 
should be able to start setting up a coupled simulation at the 
level of describing a scenario, not at the level of writing code for  
each of the involved solvers.

To lower the entry barrier and to make sure that the majority 
of users can keep using popular solvers with the latest ver-
sions of preCICE, we have developed a set of official adapters, 
which we host and maintain in their own repositories under the  

Figure 15. Overall flow of coupling steps resulting from the preCICE configuration of Listing 3. The serial coupling scheme leads to 
a staggered execution of both participants, one after the other. Both participants wait in initialize and advance for synchronization. We 
assume identical time step sizes in both participants.

16preCICE documentation: https://precice.org/docs.html
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preCICE GitHub organization17. This allows each project to  
follow a fitting development cycle and makes it easier for the 
community to contribute and to adopt projects upstream. As 
the collection of adapters grows, such community contributions 
are crucial, not only in fixes and features, but also in assuming  
maintainer roles.

We present here all mature official adapters to date. All the solv-
ers discussed in this section are free/open-source projects, a  
fundamental property that greatly facilitates the adapter devel-
opment and distribution. For free/open-source solvers, adapters  
can have the form of (i) in-place source code modifications,  
(ii) calls to an additional adapter class, or (iii) runtime plugins, 
wherever supported. In contrast to adapters for open-source  
solvers, coupling of closed-source solvers usually entails inter-
acting through a wrapper, application programming interface  
(API), or control files, architectures which potentially cancel  
fundamental features of preCICE.

We begin with OpenFOAM and SU2, two solvers primarily 
used for simulating fluids. We continue with CalculiX and code_
aster, two solvers primarily used for simulating solids. We then  
discuss FEniCS, deal.II, and Nutils, general FEM frameworks for 
which we provide various coupled examples. At the end of the  
section, we list further adapters maintained by the community.

4.1 OpenFOAM
OpenFOAM18 is a finite volume toolbox and collection of solv-
ers primarily for CFD simulations61. The OpenFOAM adapter19  
is currently the most frequently used of the listed adapters and 
OpenFOAM represents the fluid solver in most of our tutorial  
cases. It is also the adapter with the highest number of contribu-
tions in the context of student and research projects62–65. The 
adapter is being actively developed and more features have been 
added in the past years by multiple contributors. A separate ref-
erence publication for the OpenFOAM-preCICE adapter is  
currently under review by the OpenFOAM20.

On the technical side, the adapter is an OpenFOAM func-
tion object, to which OpenFOAM can link at runtime. Function 
objects are plug-ins that OpenFOAM uses mainly for optional  
post-processing tools. Implementing the adapter in this way allows 
using the adapter with any standard or in-house OpenFOAM  
solver (each being a stand-alone application) that supports func-
tion objects, without modifying the code of the solver63. The  
separation between the solver and the adapter has facilitated 
development and increased user adoption, such that we now 
aim for this model wherever possible. We support the latest ver-
sions of the major OpenFOAM variants, including v1706–v2106 

(ESI/OpenCFD, main adapter branch) and 4.0–8 (The Open-
FOAM Foundation, version-specific branches). The adapter 
can be built from source using the WMake build system 
of OpenFOAM and installed into the FOAM_USER_LIBBIN  
directory.

On the application side, the adapter supports conjugate heat 
transfer (CHT), fluid-structure interaction (FSI), and fluid-fluid  
coupling. In terms of CHT, it can read and write temperature, 
heat flux, sink temperature, and heat transfer coefficient, allow-
ing not only for Dirichlet-Neumann, but also for Robin-Robin  
coupling. 

In terms of FSI, the adapter can read absolute and relative dis-
placements (defined on either face nodes or face centers), while it 
can write forces and stresses (on face centers). At least the mesh 
motion solver displacementLaplacian is known to work. 
Again, a distinction between compressible and incompressible  
solvers is needed.

The adapter also supports fluid-fluid coupling, reading and writ-
ing pressure, velocity, as well as their gradients. This is an area  
of active research and further development.

The coupling fields, patch names, participant name, path to 
the preCICE configuration file, and more are configured in 
the adapter configuration file system/preciceDict, an  
OpenFOAM dictionary.

In addition to that, the user needs to specify the adapter function 
object in the system/controlDict. Several tutorial cases are 
available, using the solvers pimpleFoam, buoyantPimpleFoam, 
buoyantSimpleFoam, and laplacianFoam. There are also  
several examples in which the preCICE community has used 
the adapter (as-is or modified) with further standard and  
in-house OpenFOAM solvers, including cases with compressible  
multiphase flow66 and cases with volume coupling67–69.

The code is available on GitHub21 under the GPLv3 license, 
the same license as OpenFOAM. The code contains also  
comments with instructions on extending it.

The OpenFOAM community is currently developing (and has 
already done so in the past) very important contributions in bring-
ing multi-physics simulations to OpenFOAM. Prominent exam-
ples include the standard CHT solver chtMultiRegionFoam22 and  
the FSI solvers fsiFoam70 and solids4Foam71. These projects 
solve the respective multi-physics problem monolithically, 
at least software-wise: they implement both single-physics 

17All preCICE repositories on GitHub: https://github.com/precice/

18OpenFOAM website (OpenCFD): https://www.openfoam.com/. Several alternative versions/forks exist.

19OpenFOAM adapter documentation: https://www.precice.org/adapter-openfoam-overview.html

20OpenFOAM Journal: https://journal.openfoam.com/

21OpenFOAM adapter on GitHub: https://github.com/precice/openfoam-adapter, GPLv3

22OpenFOAM User Guide – chtMultiRegionFoam: https://www.openfoam.com/documentation/guides/latest/doc/guide-applications-solvers-heat-transfer-chtMultiRe-
gionFoam.html.
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domains inside OpenFOAM, compiled in the same executable. 
In contrast, the OpenFOAM-preCICE adapter provides addi-
tional flexibility to couple OpenFOAM with any other solver 
via preCICE. Other projects also apply the partitioned approach 
to extend OpenFOAM with the functionality of other codes, 
including OpenFPCI (ParaFEM)72, EOF-Library (Elmer)73, and  
ATHLET-OpenFOAM coupling74. OpenFOAM has previously 
also been coupled with preCICE using independent (unoffi-
cial) adapters in the theses of Kevin Rave75 (CHT) and David  
Schneider76 (FSI), as well as in the project FOAM-FSI of David 
Blom for foam-extend23. The official OpenFOAM-preCICE  
adapter differs in providing a general-purpose adapter for  
preCICE for a wide range of users and use cases.

4.2 SU2
SU224 (Stanford University Unstructured) is a finite vol-
ume solver which provides compressible and incompressible 
solver variants for CFD77. The SU2 adapter78 supports SU2 v6.0  
“Falcon” and contributions from the community are particularly  
welcome in this project25.

As SU2 is written in C++, the adapter directly uses the C++ API  
of preCICE. The API calls are provided by an adapter class, 
which is utilized in the SU2 solver files (e.g., in SU2_CFD.cpp).  
An installation script copies the modified, version-specific files  
to specific locations in the SU2 source code, which is then  
built normally.

The adapter is designed for FSI applications and supports read-
ing forces and writing absolute or relative displacements. The 
adapter is configured via additional options in the native con-
figuration file of SU2 and the modified solver can be executed 
with or without enabling preCICE. The user can set the name 
of the marker which identifies the FSI interface in the geom-
etry file of SU2 and can run simulations with multiple coupling  
interfaces.

Similarly to the adapter, SU2 is also used as a solver in other 
coupling projects, for example CUPyDO79, where the CUPyDO 
coupler calls SU2 via a Python wrapper. In addition to exter-
nal coupling options, SU2 offers monolithic capabilities for  
multi-physics simulation such as FSI and CHT80,81.

4.3 CalculiX
CalculiX26 is an open-source FEM code82. CalculiX offers a vari-
ety of solvers and the CalculiX adapter27 enables coupling some 
of these solvers via preCICE. The adapter supports the dynamic 

linear geometric and the dynamic nonlinear geometric solvers 
of CalculiX for coupled FSI problems, as well as static thermal 
and dynamic thermal solvers for CHT problems. The CalculiX  
adapter20,62 is compatible with CalculiX 2.16, it is regularly 
updated for new CalculiX releases, and maintains support for older  
versions in version-specific branches.

The adapter directly modifies the source code of CalculiX and 
produces a stand-alone executable ccx_preCICE, which can 
be used both for coupled and for CalculiX-only simulations: the 
flag -precice-participant <name> enables the preCICE 
adapter. All preCICE-related functionality is provided in  
additional source files supplied with the adapter.

The adapter is configured through a YAML file that specifies 
the coupling interface names, coupling data variable types, and 
type of interface (mesh nodes, or mesh nodes with connectiv-
ity). It can be used with both linear and quadratic tetrahedral  
(C3D4 and C3D10) and hexahedral (C3D8 and C3D20) solid  
elements, as well as S3 and S6 tetrahedral shell elements. 

CalculiX is written in C and Fortran. However, all preCICE 
functionality is incorporated using the C bindings of pre-
CICE. To perform coupled simulations with CalculiX in parallel  
on shared-memory systems, the adapter treats CalculiX as a 
serial participant, while the CalculiX linear solver is executed 
in parallel. More details on how to run CalculiX in parallel is  
available in the CalculiX user manual83.

4.4 code aster
code_aster28 is an FEM code in Fortran (with a Python API) 
developed by EDF France, offering solvers for heat transfer, 
structural analysis, and more, with one of the main applications 
being nuclear power engineering. The code_aster adapter62 29 is 
compatible code_aster 14.6, while it is being maintained to work  
with the latest versions of preCICE.

On the technical side, the adapter is a single adapter.py  
file providing methods that are used in an example  
adapter.comm command file for CHT simulations. As a 
Python code, the adapter depends on the preCICE Python 
bindings. It can be installed by copying the adapter file into  
the ASTER_ROOT/14.6/lib/aster/Execution/ directory.

On the application side, the adapter can currently read and  
write sink temperature and heat transfer coefficient, thus sup-
porting Robin-Robin coupling for CHT. The preCICE tutorials 

23FOAM-FSI on GitHub: https://github.com/davidsblom/FOAM-FSI

24SU2 website: https://su2code.github.io/

25SU2 adapter on GitHub: https://github.com/precice/su2-adapter, LGPLv3

26CalculiX website: http://www.calculix.de/

27CalculiX adapter on GitHub: https://github.com/precice/calculix-adapter, GPLv2

28code_aster website: https://www.code-aster.org/

29code_aster adapter documentation: https://www.precice.org/adapter-code_aster.html
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include such a Robin-Robin CHT case with code_aster and the  
steady-state fluid solver buoyantSimpleFoam. 

The code is available on GitHub30 under the GPLv2 license 
and can be easily extended by adding more coupling fields in  
adapter.py and providing their names as arguments to the  
method adapter.writeCouplingData().

4.5 FEniCS
FEniCS is an open-source general-purpose FEM package 
with a high-level Python interface84. FEniCS does not provide  
ready-to-use solvers, but instead provides a broad range of tools 
for solving partial differential equations with a high level of 
abstraction. A wide variety of examples is provided in the FEniCS 
project to illustrate its usage85. The FEniCS-preCICE adapter86  
facilitates coupling of FEniCS-based solvers using preCICE. 

The adapter is configured using a JavaScript object notation 
(JSON) file. Afterwards, the adapter is initialized by provid-
ing a FEniCS Mesh and a SubDomain to define the coupling  
boundary. 

For data exchange, the adapter offers a simple function  
adapter.write_data(solution). This function samples 
a given solution on the previously defined coupling mesh and 
writes the samples to preCICE. The function coupling_data 
= adapter.read_data() returns the interface data pro-
vided by preCICE. The adapter provides two possibilities 
to transform this raw coupling_data to a boundary con-
dition that can be used in FEM: (1) An Expression can be  
generated and used as a functional representation of provided  
coupling_data via interpolation or (2) a PointSource  
can be generated to apply point-wise loads. Both approaches 
have their respective use-cases for FEniCS users86, but a user can 
also use the raw coupling_data to create boundary conditions  
depending on the individual requirements. 

The adapter supports the built-in parallelism of FEniCS and uses 
its domain decomposition. If the coupling interfaces are decom-
posed over multiple ranks, the adapter implements additional  
inter-process communication at the interface between  
two ranks.

Many packages similar to FEniCS exist, such as firedrake87, or 
the FEniCS successor FEniCS-X31. The adapter is not designed 
to work with these packages, but it can serve as a template  
for the development of specialized adapters. 

The adapter is distributed under the LGPLv3.0 license on  
PyPI32. If preCICE is installed on the system, the latest  
version of the adapter can be installed via pip. With FEniCS 
being a Python-based package, the adapter depends on the 
preCICE Python bindings, which are automatically installed 
with the adapter. The source code of the adapter is available on  
GitHub33 and user documentation can be found on the preCICE 
website34.

Related work to solve multi-physics problems with FEniCS 
includes, for example, the monolithic fluid-structure interaction 
solver turtleFSI88 written in FEniCS, as well as FENICS-HPC89.  
FEniCS extensions such as multiphenics35 have also been  
developed to promote prototyping of multi-physics problems.

4.6 deal.II
deal.II90,91 is a general-purpose FEM library written in C++. 
Similar to FEniCS, deal.II does not include ready-to-use solvers,  
but allows users to write their own application codes by pro-
viding an easy-to-use interface to complex FEM-specific data 
structures and algorithms. The library provides state-of-the art  
numerical techniques and their implementations leverage dis-
tributed memory computations, vectorization, threading and  
matrix-free implementations, which have been proven to scale  
up to whole supercomputers92,93.

While deal.II is a general-purpose library, the deal.II adapter 
focuses on a subset of relevant applications and features. 
Instead of trying to provide a general-purpose deal.II adapter, 
we provide examples for users that want to develop their own  
preCICE-enabled solvers with deal.II. These examples36 show 
linear and non-linear elastic solid mechanics codes in a coupled  
FSI scenario. From a user perspective, these coupled codes  
are ready-to-use without detailed knowledge of deal.II itself, but 
can also provide a starting point for own application-specific  
adapter developments. Similarly to deal.II and preCICE, the 
examples are built using CMake and a parameter file controls  
solver-specific preCICE settings. Simple meshes can directly 
be defined in the source code, whereas external meshes can be  
loaded at runtime.

In addition to these examples, we have created a very basic 
stand-alone one-way coupling example and contributed it to 
the deal.II code-gallery37. In this example, a Laplace problem 
is coupled to a time-dependent C++ boundary condition code. 
The example is meant to serve as a first impression of how the  
preCICE API looks and how to use it along with deal.II.

30code_aster adapter on GitHub: https://github.com/precice/code_aster-adapter, GPLv2

31DOLFINx (basis of FEniCS-X) on GitHub: https://github.com/FEniCS/dolfinx

32Package fenicsprecice on PyPI: https://pypi.org/project/fenicsprecice/

33FEniCS adapter on GitHub: https://github.com/precice/fenics-adapter, LGPLv3.0
34FEniCS adapter documentation: https://www.precice.org/adapter-fenics.html
35multiphenics website: https://mathlab.sissa.it/multiphenics
36deal.II adapter on GitHub: https://github.com/precice/dealii-adapter, LGPLv3
37preCICE example contributed to the deal.II code-gallery: https://dealii.org/developer/doxygen/deal.II/code_gallery_coupled_laplace_problem.html
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As the low-level design of deal.II offers a lot of freedom of 
implementation approaches, multi-physics simulations have  
also been implemented in other ways94,95.

4.7 Nutils
Similar to FEniCS and deal.II, Nutils96 is also a general-purpose  
FEM library. Missing capabilities for distributed computing  
and the fact that Nutils is purely written in Python, includ-
ing matrix assembly, makes the library somehow less per-
formant than alternatives. The powerful and intuitive API of 
Nutils, however, allows for fast prototyping. These points make  
Nutils a perfect option for the cheaper, but possibly more  
complex participant of a coupled simulation, or for testing new 
coupling approaches. A first partitioned heat conduction exam-
ple coupling two Nutils participants was developed and validated 
within only a half day of work and is available as a preCICE  
tutorial (cf. Section 5). In general, coupling a new Nutils appli-
cation code is a rather simple task and can be realized best  
by copying and adapting existing examples. Defining coupling 
meshes and accessing coupling data is a particularly simple task 
as illustrated in Listing 4. Therefore, in contrast to (for exam-
ple) FEniCS, developing a general stand-alone Nutils-preCICE  
adapter is not necessary. In recent years, several examples 
have been realized. The preCICE documentation gives an  
up-to-date overview38.

4.8 Further adapters
The aforementioned are not the only adapters published in the 
preCICE GitHub organization. The organization also includes a 
few less-actively maintained projects, which mainly serve as start-
ing points for anyone who wants to build a more complete solu-
tion. If this applies to you, we would appreciate your feedback  
and contributions, especially in tutorial cases and maintenance.

•   �ANSYS Fluent: Intended for the fluid part in FSI and 
implemented as a so-called user-defined function plug-in.  
This adapter14,97 is currently experimental39.

•   �COMSOL Multiphysics: Intended for the structure part 
in FSI. Similarly to Fluent, this is one of the earliest  
adapters and it is currently not actively maintained.

•   �MBDyn: Intended for the structure part in FSI. Con-
tributed by the TU Delft Wind Energy group and 
irregularly extended by the community23. The adapter  
repository40 includes a tutorial case which simulates 
3D cavity flow with a flexible bottom surface in which  
MBDyn is coupled to OpenFOAM.

•   �LS-DYNA: Intended for the structure part of CHT. Not 
a ready-to-use adapter, but rather a detailed descrip-
tion on how to create an actual LS-DYNA adapter. Con-
tributed by the LKR group at the Austrian Institute of  
Technology69.

•   �Elmer FEM: Intended for the structure part in FSI.  
Currently under development in a student project41.

Apart from these codes, you can also find a list of  
community-developed projects in Section 7.

5 Illustrative examples
After installing preCICE, a user typically wants to run a 
first coupled example case as close to their application and  
preferred solvers as possible. Such an example needs to be sim-
ple enough to follow without significant expertise in any of 
the involved solvers, but yet full-featured in terms of coupling. 
With this in mind, we offer a collection of tutorial cases hosted 
on precice/tutorials, with step-by-step guides in the preCICE  
documentation42. Such a tutorial consists of all the required 
instructions and configuration files necessary to run the coupled  
simulation, as well as convenience scripts to run, visualize, and 
cleanup each case. The same cases and scripts are also used 
in the preCICE system tests (cf. Section 6.3) and all tutorials  
follow a consistent structure and naming scheme, described in  
the contributing guidelines43.

An important design decision of these tutorials is that every com-
bination of the available solvers should work and give reason-
ably similar results, demonstrating the plug-and-play concept  
of preCICE. This lets the user start from a case as close to their 
target as possible and then potentially replace one of the par-
ticipants with their own solver, maintaining a reference to  
compare with. To achieve this goal, we had to develop features that  
may otherwise seem unnatural. One of the most prominent 
such features is that the adapters for OpenFOAM and CalculiX  
(natively 3D solvers) can also work in a 2D mode, coupling 
only lines of face points instead of surfaces. This automatic 2D  
mode works either by applying additional interpolation to map 
points from the mesh nodes to the face centers, or directly switch-
ing to data available at the face centers or to data on a predefined 
plane. 

Historically, the collection has grown with contributions from 
the community. As such, the tutorials should currently be seen 
as individual examples showcasing particular applications and 
features, rather than as a structured cookbook. We focus here 

38Nutils adapter documentation: https://precice.org/adapter-nutils.html
39Fluent adapter on GitHub: https://github.com/precice/fluent-adapter, GPLv3

40MBDyn adapter on GitHub: https://github.com/precice/mbdyn-adapter, GPLv3

41Elmer adapter on GitHub: https://github.com/HishamSaeed/elmer-adapter (under development)

42preCICE tutorials documentation: https://precice.org/tutorials.html

43preCICE contributing guidelines: https://precice.org/community-contribute-to-precice.html
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on two representative cases that are available for a wide range 
of solvers: a CHT and an FSI example. The complete collection  
of tutorials is listed in Figure 16.

5.1 Flow over a heated plate CHT tutorial
This tutorial consists of a simple CHT scenario. The case con-
sists of a 2D channel flow, coupled at its bottom with a 2D 
heated solid plate (cf. Figure 17). As heat is conducted across  
the solid plate, the temperature of the flow region above and 
downstream the plate increases, as shown in Figure 18. We dis-
cuss here the transient variant of this tutorial44. Since experi-
mental data is available by Vynnycky et al.98 the scenario serves  
often as a validation case for CHT simulations99,100.

The fluid participant is the compressible OpenFOAM solver  
buoyantPimpleFoam. For the solid participant, the user can 
choose among the OpenFOAM solver laplacianFoam and heat  
conduction solver examples based on FEniCS or Nutils. In 
the case of laplacianFoam, we compute the heat flux assum-
ing a constant heat conductivity k

S
, which is additionally speci-

fied in the OpenFOAM adapter. In the case of FEniCS, the 
solver was developed40 based on a heat equation example from  
Langtangen et al.85. A detailed description of the solver can 

be found in the FEniCS adapter reference paper86. In case of  
Nutils, we provide a similar example.

All of the possible combinations ({OpenFOAM} × {Open-
FOAM, FEniCS, Nutils}) use the same preCICE configuration 
file and the user can select any combination at runtime. The solid  
participant solvers write heat flux values and apply a Dirichlet  
boundary condition by reading temperature values at the cou-
pling interface. Accordingly, the fluid OpenFOAM participant 
writes temperature values and applies a Neumann boundary 
condition by reading heat flux values at the coupling interface. 
By default, the tutorial is configured with a serial-implicit cou-
pling scheme in combination with Aitken under-relaxation  
and nearest-neighbor mappings.

A quantity that is commonly monitored in this scenario is the  
non-dimensional temperature θ = (T − T∞)/(T

h
 − T∞) along the 

interface. Figure 19 depicts identical θ profiles for all solver  
combinations. Furthermore, the isothermal contour plot of  
the unified fluid-solid domain (cf. Figure 18) is continuous and 
smooth across the coupling interface. Note that a quantitative  
comparison to the original work98 is not possible, as our  
cases describe flow inside a channel and not an open flow.

Listing 4. A simplified coupled Nutils code. Due to the rich and flexible API of Nutils, defining coupling meshes and accessing coupling 
data are simple tasks, rendering a stand-alone Nutils-preCICE adapter unnecessary.

 1 import precice, nutils
 2
 3 domain = ... # define Nutils domain
 4 ns.u = ... # Nutils solution u in namespace ns
 5 interface = precice.Interface("FluidSolver", "precice-config.xml", 0, 1)
 6 [...]
 7 # defining a coupling mesh
 8 coupling_boundary = domain.boundary['top']
 9 coupling_sample = coupling_boundary.sample('gauss', degree=2)
10 vertices = coupling_sample.eval(ns.x)
11 vertex_ids = interface.set_mesh_vertices(meshID, vertices)
12 
13 # instead of Gauss points, we can also couple at (sub-sampled) cell vertices
14 coupling_sample = couplinginterface.sample('uniform', 4) # 4 sub samples per cell
15
16 # or volume coupling
17 coupling_sample = domain.sample('gauss', degree=2)
18
19 # reading coupling data and applying as boundary condition
20 read_data = interface.read_block_scalar_data(read_data_id, vertex_ids)
21 read_function = coupling_sample.asfunction(read_data)
22 sqr = coupling_sample.integral((ns.u - read_function)**2)
23 constraints = nutils.solver.optimize(sqr, ...) # for a Dirichlet BC
24
25 # writing data
26 write_data = coupling_sample.eval('u' @ ns, ...)
27 interface.write_block_scalar_data(write_data_id, vertex_ids, write_data)

44Documentation of this CHT tutorial: https://precice.org/tutorials-flow-over-heated-plate.html
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Figure 16. List of available tutorial cases.

Figure 17. Flow over a heated plate CHT tutorial: The setup is depicted at the top, geometric and physical parameters are 
listed in the tables at the bottom of the figure. The fluid participant reads heat flux at the interface Γ

C
, while the solid participant 

reads temperature. The boundary values for the inflow (Γinflow), outflow (Γoutflow), and the hot bottom of the plate (Γhot) are listed in the 
tables at the bottom of the figure. All other boundaries are insulated. uinflow, Tinflow: velocity and temperature at the inflow boundary. p0: 
ambient pressure at all boundaries of the fluid. Thot: temperature at the bottom of the plate. g: acceleration due to gravity. k

F
 and k

S
: 

thermal conductivity of the fluid and solid. ρ
F
 and ρ

S
: density of the fluid and solid. c

p,F and c
p,S: specific heat capacity of the fluid and 

solid. ∗
S
®  = k

S
 /(ρ

S
c

p,S): thermal diffusivity of the solid. µ: dynamic viscosity. ν* = µ/ρ
F
: kinematic viscosity. Pr* = c

p,F
 µ/k

F
: Prandtl number 

of the fluid. M* = ρ
F
 RTinflow/p0: Molar mass of the fluid with R being the gas constant. z is the out-of-plane thickness: even if the  

coupled case is described as 2D, OpenFOAM is still a 3D solver. Quantities marked with a * are derived quantities.
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Figure 18. Flow over a heated plate CHT tutorial: Isothermal lines for the OpenFOAM-FEniCS combination at time t = 10s. The 
lines are continuous and smooth across the interface. Similar results are observed for all other solver combinations.

Figure 19. Flow over a heated plate CHT tutorial: Comparison of non-dimensional temperature values θ at time t = 10s along a 
line 0.01m above the bottom of the channel for different combinations of solvers. x ∈ [−0.5, 0] describes the region of the channel 
upstream of the plate, x ∈ [0, 1] the region where the channel and the plate are coupled and x ∈ [1, 3] the downstream region.

5.2 Flow in a channel with an elastic perpendicular flap 
FSI tutorial
The most common use case of preCICE is FSI. Often, one of the 
first case users aim to run is the Turek-Hron FSI3 benchmark101. 
However, this case needs significant computational resources  
and specifications that are not trivial to achieve with every 
solver out-of-the-box (e.g., parabolic inlet velocity profile in  
OpenFOAM). A very common alternative is that of an elastic 
flap anchored at the bottom of a 2D channel flow as depicted in  
Figure 20 and further described in the preCICE documentation45.

For the fluid participant, the user can choose between:

1.   �the incompressible OpenFOAM solver pimpleFoam,

2.   �an incompressible CFD solver written in Nutils, or

3.   �the compressible CFD solver of SU2.

For the solid participant, the user can choose among:

1.   �the linear structure solver of CalculiX with linear,  
rectangular finite elements,

2.   �a linear structure solver provided with the deal.II  
adapter, using fourth order, rectangular finite elements, or

3.   �a linear structure solver example in FEniCS, using  
quadratic, triangular finite elements.

All possible combinations ({OpenFOAM, Nutils, SU2} ×  
{CalculiX, deal.II, FEniCS}) use the same preCICE configuration  
file and the user can select any combination. The fluid solvers  
read absolute displacement values at the interface (Dirichlet  
boundary condition) and write forces, while all solid solvers  
read forces (Neumann boundary condition) and write absolute  
displacements. By default, the tutorial is configured with RBF 
data mappings and a parallel-implicit coupling scheme using  
IQN-ILS acceleration.

A quantity that is commonly monitored in this scenario is 
the displacement of the tip of the flap. We track this quantity 
using a preCICE watchpoint and compare the results across 
different solver combinations in Figure 21. Figure 22 shows 
a direct comparison snapshot of an FSI simulation with an  
incompressible and a compressible fluid solver.

6 Testing and continuous integration
The core preCICE library and the non-core components are 
developed in separate repositories, each with a number of  

45Documentation of this FSI tutorial: https://precice.org/tutorials-perpendicular-flap.html
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Figure 21. Flow in a channel with an elastic perpendicular flap FSI tutorial: Comparison of the flap tip displacement for different 
combinations of solvers. The upper plot shows the results for an incompressible flow computed with Nutils or OpenFOAM. The lower 
plot shows the results for compressible flow computed with SU2. Incompressible and compressible flow give qualitatively different results, 
as expected. Good agreement within each class of flow simulation is achieved for all combinations of solid and fluid solvers. When using 
CalculiX as solid solver, the distribution v2104.019 specified C3D8 elements, which led to insufficient agreement with the results of the rest 
of the solvers. Using C3D8I elements produces results which are in better agreement, a suggestion contributed after the release of v2104.0 
by Andrés Pedemonte Fehrmann (https://github.com/precice/tutorials/pull/250) and used for the results shown here.

Figure 20. Flow in a channel with an elastic perpendicular flap FSI tutorial: The setup is depicted on the left and physical 
parameters are listed in the table on the right. The bottom of the flap is clamped, the solid participant reads forces at the interface, 
while the fluid participant reads displacement values. The inflow velocity at the channel inlet is 10 m/s and the outflow sets a zero velocity 
gradient. Ma∞, p∞, T∞, u∞: Mach number, pressure, temperature, and velocity at the inflow. ν

f
, ρ

f
: kinematic viscosity and density of the fluid. E: 

Young’s modulus. ν
s
: Poisson’s ratio of the solid. ρ

s
: density of the solid. z is the out-of-plane thickness: even if the coupled case is described 

as 2D, OpenFOAM and CalculiX are still 3D solvers.
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continuous integration (CI) workflows. These workflows are 
tests, quality assurance checks, or operations to prepare and vali-
date packages. We find such workflows to be indispensable for  
multi-component, multi-developers projects, as they answer 
questions such as ’will the code still compile and behave in the 
same way if we integrate these changes?’, ’will a simulation 
still give the same results?’, and ’will these changes have side-
effects in other (potentially not regularly updated) components?’. 
In other words, these workflows facilitate further development  
by ensuring that everything still works.

Figure 23 depicts the currently deployed workflows. As one 
may observe, the granularity of testing and CI correlates to the 
number of users and developers involved in each subproject. In 
some cases, it may also be enabled or hindered by the respective  
programming language environment. As the most important 
and actively developed component, the core library is rigorously  
tested in a wide range of levels. The rich tooling collection  
of Python enables the continuous integration (CI) of the Python 
bindings and the FEniCS adapter, while we are gradually add-
ing similar workflows to the rest of the adapters. The tutorials 
provide a platform to test every component in complete simula-
tions (system tests with results regression checks). Finally, a few  
additional workflows keep non-critical systems up-to-date.

The number and diversity of components required to construct  
a complete coupled simulation (at least two participants + multiple  

components per participant), as well as the challenges in test-
ing each component in isolation, makes testing a coupling  
library significantly more complex than testing a linear alge-
bra solver library, for example. Complex testing approaches 
of significant novelty are required. We structure the rest of the  
section following the different complexity levels. In Section 6.1,  
we present the CI of the core library, for which no interac-
tion with other components is required. In Section 6.2, we con-
tinue with the CI of non-native language bindings and adapters. 
This layer depends on the core library, as well as on external  
components (the solvers), leading to a need for testing in isola-
tion. In Section 6.3, we construct system tests for the complete 
software stack. Finally, in Section 6.4, we give an overview 
of additional checks and workflows which we use across the  
whole project.

6.1 Tests for the preCICE core library
To test the complete functionality of the preCICE core library, 
heterogeneous test setups are needed. Individual tests may  
require one or more logical participants running on one or more 
message passing interface (MPI) ranks. To solve this intrinsic 
problem of testing a communication and orchestration library 
in a parallel environment, the core library tests are run on four 
MPI ranks. Partitioning these four ranks allows to cover various  
scenarios, from testing math functions on a single rank, over 
testing parallel mappings on three ranks, up to testing scenarios 
with a serial participant on a single rank coupled to a parallel 

Figure 22. Flow in a channel with an elastic perpendicular flap FSI tutorial: Visualization of flow field and deformed flap at time 
t = 2s using OpenFOAM as fluid and FEniCS as solid solver. For comparison, the deformed solid mesh of an SU2-FEniCS simulation is 
shown in black to make the difference between FSI with a compressible and an incompressible fluid simulation visible. 
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participant on three ranks. As mature MPI-aware testing  
frameworks are not available, we developed our own testing 
framework extending Boost.test to support the aforementioned  
criteria.

The extension of Boost.Test provides a custom  
domain-specific language (DSL), which is used to set up a  
PRECICE_TEST(). The DSL specifies the name of local  
participants used in the test, followed by the amount of ranks 
and optional requirements. If a test contains only a single partici-
pant, then its name can be omitted. The DSL is human-readable, 
examples are "A"_on(2_ranks), "B"_on(1_rank) or simply  
1_rank. The implementation of the DSL firstly restricts the  
MPI communicator size to the required amount of total ranks,  
followed by grouping ranks by name, forming communica-
tors for the logical participants. Further specified requirements 
on logical participants, such as initialization of sub-components, 
are then handled inside the isolated state of each participant. The 
result of each PRECICE_TEST() is an immutable object which, 
for each test rank, provides access to the context including name 

and communicator information of the local participant. The  
context holds further information about the setup, informa-
tion which allows to sanitize user input provided to utility  
functions. At the end of each test, the context object firstly reverts 
all changes made by setup requirements, secondly ungroups 
the communicators, and finally synchronizes all ranks, includ-
ing ranks not needed by the test. See Figure 24 for example  
configurations of this framework.

The core library tests can be categorized into unit tests, integra-
tion tests, and code-example tests. Currently, preCICE is tested  
with a total of 438 unit and integration tests.

Unit tests This type tests a component in isolation, using its 
public interface. The test functions manually set up the major-
ity of required components and partition the available ranks 
according to the needs of the test. The needs for partitioning 
vary: First, many unit tests handling geometric functions, VTK  
exports, and mesh internals require only a single logical  
participant and run on a single rank. Furthermore, components 

Figure 23. Overview of the testing and continuous integration workflows for different preCICE components. Each box represents 
a separate project repository. The non-native language bindings depend on preCICE. The adapters depend on language bindings or directly 
on preCICE. The tutorials and system tests depend on all the adapters. The components at the bottom-most row (virtual machine image, 
CI images, Doxygen documentation, website) depend on one or more other components. Read more details about each workflow in the 
section number listed above it.
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such as VTK exports and radial-basis-function mappings have 
additional functionality when running in parallel, hence require 
multiple ranks on a single logical unit. Finally, inter-code  
communication, the coupling schemes, and the mesh partition-
ing require multiple logical participants. Each of these logical 
participants may run on one or multiple ranks. See Listing 5 for  
an example of a unit test.

Integration tests This type uses the application programming 
interface (API) of preCICE itself to test specific scenarios, hence 
the test setup is handled using a preCICE configuration file. 
Individual logical participants may run on a single rank each, 
to test coupling of serial solvers with various setups. Another 
very common setup consists of two logical participants running  
on two ranks each. This allows to thoroughly test the parti-
tioning behavior given various mapping schemes. Integration 
tests are also used to reproduce and fix bugs reported by users.  
See Listing 6 for an example of an integration test.

Code-example tests This type smoke-tests native bindings 
using the provided examples. Native-bindings are C and Fortran  
bindings, which are implemented using the C++ API of  
preCICE and linked directly into the library. Non-native bindings  
such as Python are covered in Section 6.2. Each language bind-
ing comes with an example program called a solverdummy.  
All solverdummies implement the same functionality and  
provide a template for using the preCICE API in the respective  
programming language. The code-example tests themselves  
consist of three steps: First, the tests build each solverdummy 
and link it to the preCICE library. This tests a common subset  
of the interface of the bindings for completeness and assures 
that the build system is functional. Second, they run a small 
coupled simulation coupling each solverdummy to itself. This 
ensures that the used language binding is working correctly. 
Finally, they run a small coupled simulation coupling different 

solverdummies to each other. This ensures that the bindings (of  
different languages) are compatible.

6.2 Tests for adapters and bindings
As explained in Section 3.4 and Section 4, language bindings 
and adapters are organized in independent repositories. The 
requirements for tests of such non-core components are identical 
to the ones for the core library: the non-core components must  
also comprise of valid code, their individual units should 
behave in the correct way and work together, while continu-
ous integration tests should be performed on every commit to 
each component repository. We again distinguish unit tests and  
integration tests.

Unit tests We do not need a special treatment for unit tests of  
non-core components. Note that non-core components are writ-
ten in various languages. This requires the use of suitable testing  
frameworks for each language, such as the Python module  
unittest for the Python bindings and the FEniCS adapter.

Integration tests Non-core components use preCICE through 
its API, treating it as a regular, black-box dependency. This  
safeguards low software coupling, but also leads to a technical  
complication as already mentioned above: Due to the very 
nature of coupled simulations, preCICE requires at least two 
participants for executing most steps of a simulation. This 
cannot be avoided easily (since the components are not able  
to modify preCICE itself) and, therefore, it is not trivial to test  
each component independently.

To solve this problem we use a strategy commonly known as 
mocking. This is a well-known and widely established software 
engineering practice102, but not as widespread in the scientific 
software community. Mocking is useful, if the system under test  
(non-core component) has another component (preCICE) as 

Figure 24. This figure depicts the MPI communicator setup on the left corresponding to a sequence of test setups on the right. 
The testing framework uses four MPI ranks, depicted by the vertical lines. Horizontal black bars are barriers and dotted lines are ranks which 
are unused during a test setup and hence idle. Each test starts with PRECICE_TEST(...), containing an expression based on the DSL, which 
results in a complete test setup. The test DSL specifies the name of local participants followed by the amount of ranks. The name is optional 
for tests containing only a single participant.
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Listing 6. Example integration test involving two parallel participants SolverOne and SolverTwo running on two ranks each. 
The context object provides information about the identity of the current rank. This information is used to setup further local information 
such as mesh and data names. Integration tests then directly construct a SolverInterface and use preCICE API calls to run the test.

Listing 5. Example unit test of a parallel RBF mapping running on four ranks. Further requirements on the test are the setup of 
the master-slave communication and the initialization of PETSc. First the test defines meshes and associated data followed by setting up 
and executing the mapping. The result is then checked against the expected outcome. The example showcases the preparation involved in 
testing individual components of preCICE in a parallel context.

 1 BOOST_AUTO_TEST_CASE(ParallelMappingTest)
 2 {
 3   PRECICE_TEST(""_on(4_ranks).setupMasterSlaves(), Require::PETSc);
 4   constexpr int dims = 2;
 5   // Setup InMesh
 6   mesh::PtrMesh inMesh(new mesh::Mesh("InMesh", dims));
 7   mesh::PtrData inData = inMesh->createData("InData", dims);
 8   getDistributedInMesh(context, inMesh, inData);
 9   // Setup OutMesh ...
10   // Setup Mapping
11   PetRadialBasisFctMapping<Gaussian> mapping{
12       Mapping::CONSISTENT, dims, Gaussian{5.0}};
13   mapping.setMeshes(inMesh, outMesh);
14   // Test the Mapping preparation
15   BOOST_TEST(not mapping.hasComputedMapping());
16   mapping.computeMapping();
17   BOOST_TEST(mapping.hasComputedMapping());
18   // Test the Data Mapping
19   BOOST_TEST(not mapping.hasComputedMapping());
20   mapping.map(inData->getID(), outData->getID());
21   BOOST_TEST(outData->values() == expectedData);
22 }

 1 BOOST_AUTO_TEST_CASE(ParallelIntegrationTest2x2)
 2 {
 3   PRECICE_TEST("SolverOne"_on(2_ranks), "SolverTwo"_on(2_ranks));
 4   std::string meshName, writeDataName, readDataName;
 5   if (context.isNamed("SolverOne")) {
 6     meshName      = "MeshOne";
 7     writeDataName = "Data1";
 8     readDataName  = "Data2";
 9   } else {
10     // ...
11  }
12  SolverInterface interface(context.name, _pathToTests + "test-config.xml",
13      context.rank, context.size);
14  // set mesh vertices and initialize
15  std::array<double, 4> inValues, outValues;
16  while (interface.isCouplingOngoing()) {
17    interface.readBlockScalarData(readDataID, 4, vertexIDs, inValues);
18    if (context.isNamed("SolverOne")) {
19      outValues = inValues;
20    } else {
21      outValues = solveSystem(inValues);
22    }
23    interface.writeBlockScalarData(writeDataID, 4, vertexIDs, outValues);
24    interface.advance(1.0);
25   }
26   BOOST_TEST(outValues == expectedValues);
27 }
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a dependency and interacts with this component through its 
API. Since we want to avoid starting a second participant in 
our integration tests, we use a mocked version of preCICE  
instead of the original one. This mocked preCICE returns 
fake output for testing and does not rely on any other  
components. In the following, we give two examples for our  
implementation of this testing pattern: first, integration tests in 
the FEniCS adapter and, second, integration tests in the Python  
language bindings of preCICE. In both cases, API calls to the 
fake version of preCICE do not require any initialization of a 
second participant and hard-coded fake values are returned. This  
allows to write short and simple tests.

Mock testing for the FEniCS adapter heavily relies on the 
Python module unittest.mock, which allows creating a  
MagicMock object that is used to provide a fake implementa-
tion of functions or objects. Additionally, the module provides  
a patch function that allows to replace a module that a test 
imports with a fake version of the same module, at runtime. 
These two pieces allow us to replace the Python bindings of 
preCICE with a fake version. For a detailed example, please  
refer to the adapter reference paper86.

Mock testing for the Python bindings is more involved, since 
the bindings rely on two different languages, C++ and Python, 
and (to the authors’ knowledge) no mocking framework exists 
for this purpose. We, thus, test the Python bindings by build-
ing a specific executable, where we link against the mocked  
version of preCICE: a single SolverInterface.cpp with a 
fake implementation. We do include the original interface of  
preCICE (SolverInterface.hpp) to make sure that the 
API is consistent. This allows us to keep the application code 
of the Python bindings clean and to decide whether we want to 
use the real or fake implementation of the preCICE library at  
compile time. The integration tests of the Python bindings 
then allow us to check for the correctness of type conver-
sions done by the language bindings, such as converting a C++  
double* array to a numpy array103 using Cython104. An exam-
ple is given in Listing 7. Our mocking approach leads to a  
non-standard setup.py build script, which allows us to  
choose whether we want to build the real executable or the 
one intended for testing through the standard interface of  

setuptools46. A nice side effect of this testing pattern is that 
preCICE itself is not even needed and does not have to be  
installed on the system running the tests.

Outlook Testing of other language bindings and adapters is 
under current development: Our prototype for integration tests 
for the OpenFOAM adapter uses the mock testing pattern  
and the C++ mocking framework FakeIt47. For testing the  
MATLAB bindings, the existing Python bindings testing  
approach may be used. 

6.3 System and regression tests
Fine-grained unit and integration tests can give us detailed  
insight into each component, but these tests only study each  
component or group of components in isolation. System tests 
give us the user perspective of all components working together: 
‘does the coupled simulation black-box still behave in the 
same way?’ and ‘if not, which change in which component 
introduced the regression?’. While system tests can be quite  
straight-forward in their implementation, developing effective  
system tests for multi-component, multi-participant simula-
tions becomes a complex task, especially when considering  
different stakeholder perspectives.

Let us look at a few examples of such stakeholder perspectives. 
As a release manager, Maria wants to know that the latest state 
of all development branches to be released works flawlessly  
together on the release day, so that she can release a new version.  
As a developer of the core library, Lisa wants to know that her 
proposed changes do not cause any unintended regression in 
results or behavior in the context of a complete simulation.  
As a developer of an adapter, Adam has even more questions.  
First, similarly to Lisa, he wants to know that his proposed 
changes do not cause any regressions downstream. Additionally,  
Adam wants to know if he needs to update his adapter to  
support breaking changes (of installation/configuration) in the  
development branches of upstream components or new solver 
and dependency versions. As a developer of tutorial cases, Tudor 
wants to know that configuration updates do not cause regres-
sions and that the tutorials still work as expected with newer 
solver and dependency versions. Finally, as a maintainer of the 
system tests, Sy wants to know that their proposed changes do not  
cause any downtime to the operations.

Listing 7. Fake implementation of setMeshVertices used for integration tests of Python bindings. The fake version of  
setMeshVertices just returns fake vertex IDs. If an integration test of the Python bindings is calling this function, one can easily check 
whether the obtained vertex IDs are the expected ones using Python’s unit testing framework.

void setMeshVertices(int meshID, int size, const double *positions, int * ids){
  std::vector<int> fake_ids = get_hardcoded_ids(size);
  std::copy(fake_ids.begin(), fake_ids.end(), ids);
}

46python3 setup.py install or python3 setup.py test

47FakeIt: https://github.com/eranpeer/FakeIt
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The situation we just described becomes apparent looking at  
Figure 25. The test matrix evolves into a cross product of: 

{platform} {preCICE branches} {bindings b.} {adapter b.}

{tutorial b.} {system tests b.}

× × ×
× ×

As these tests take a long time to prepare and execute and as  
they are particularly challenging to log in a structured and  
effective way, executing the complete test matrix is not realistic  
and we need to select representative configurations.

We restrict the test matrix to a set of strategically important 
combinations. In terms of platforms, we execute most tests on 
the platform most common among users, currently the latest  
Ubuntu LTS version 20.0448. We also execute selected tests on 
the oldest supported platform (previous Ubuntu LTS) and on 
the latest state of the continuously-updated Arch Linux49. In  
terms of branches, we test each proposed branch with the 
rest of the components in their latest released state: this helps  
Lisa, Adam, and Tudor develop their projects independently,  
without worrying about untested new features. In case a break-
ing change is introduced in one component, then this needs 
to be tested in combination with corresponding compatibility 

updates in the downstream components. We also test the devel-
opment branches of all components together in nightly builds, 
so that Maria and every developer can confidently release new  
versions of each component.

Maintaining the system tests and reference data up-to-date  
requires significant effort and any failing tests need to be  
addressed quickly, so that they remain useful and trusted. We 
observed that deep understanding and documentation of known 
issues that trigger test failures is crucial for the infrastructure 
to facilitate instead of hinder the development. Similarly, eas-
ily accessible logging of different levels is very important to 
verify that all relevant tests have succeeded and to precisely  
identify any faults. Finally, even though the operations need 
to be automatic enough to get green lights at the right places, 
developers do want to be able to form a clear mental model  
of the system behind the automation in order to trust the system  
and try to debug it, if needed.

Since preCICE v1 and till v2.1, we maintained the system tests 
on a dedicated repository50 using Travis CI. This repository  
contained scripts to run tests, scripts to prepare the test cases, 
as well as reference data for each test case. Because of policy 

Figure 25. Example questions that the system (regression) tests of preCICE help us answer (planned workflow). The system 
tests are always executed at the bottom-most layer (tutorials repository), using Docker images prepared in the layers above. Every night, all 
develop branches are tested together, to ensure that a new version of preCICE can be released at any time (blue). Pull requests that introduce 
non-breaking changes are automatically tested against the latest released versions of the other repositories (orange). Pull requests that 
introduce breaking changes need additional coordination with downstream projects and the tests need to compose compatible branches 
(green). The Python bindings and the FEniCS adapter only serve here as examples; in practice, more repositories are involved.

48Ubuntu 20.04 LTS: https://wiki.ubuntu.com/FocalFossa

49Arch Linux: https://archlinux.org/

50preCICE system tests on GitHub: https://github.com/precice/systemtests
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changes in Travis CI and increasing flexibility offered by newer 
alternatives, we phased-out this implementation and we have 
been migrating to a different system. We describe here the out-
dated architecture of the tests used for preCICE v2.1 and discuss  
issues and potential solutions.

With every new commit pushed to an adapter repository, the Travis 
CI instance of the adapter instructed the Travis CI instance of 
the systemtests repository to run any tests (tutorials) it knew 
to involve this adapter. Travis CI then built Docker images of  
preCICE adapters and pushed these to Docker Hub so that 
they could be reused. It then started one Docker container per  
simulation participant, as well as one Docker container serving  
the tutorial configuration. We used Docker Compose to build  
connections between the containers and we set a commonly 
accessible directory to exchange necessary connection tokens  
for the inter-code communication, as described in Section 3.3.

At the end of each test case, a script compared the results. 
We originally compared every available results file excluding  
lines unique to every run. To account for sporadic rounding 
errors, we filtered arithmetic data and applied a numerical com-
parison. As this approach was very tedious to maintain for every 
new solver, we switched to comparing only the exported VTK  
files of the preCICE interface meshes. With a common file for-
mat at hand, the comparison scripts became much easier to 
execute and maintain. We also found this simplification to be 
enough for identifying regressions in the coupling, which is our 
main interest. After Travis CI compared the results, it archived 
key log files to a dedicated repository precice_st_output.  
This was a far-from-ideal logging solution, leading to cumber-
some workflows to discover more details about the executed  
tests and potential failures.

We are currently redesigning our system tests. Key decisions 
so far have been to separate the machinery from the reference 
data, hosting the (reduced) reference data together with the con-
figurations that produce them (tutorials), so that they can be 
updated at the same time. More recent tools, such as GitHub  
Actions51 and GitLab CI52, offer multi-project pipelines and 
more possibilities for storing artifacts and archiving logs. With 

such additional options to avoid complex workarounds and with 
our experience from the aforementioned approaches, a redesign-
ing was deemed reasonable and is expected to fruit in the near 
future. Until then, we rely on regular manual runs with every  
release.

6.4 Additional checks
To maintain the quality and consistency of the codebase, the 
preCICE CI runs additional checks on the latest state of every 
pull request. The CI uses a fixed version of clang-format53 to  
check all C++ and C files, as well as a custom formatter based 
on the Python lxml54 package to check all XML configuration 
files for correct formatting. As most CI environments provide 
multiple CPUs, the system uses GNU parallel105 to leverage the  
available compute resources.

When building and testing on Ubuntu, the CI additionally gener-
ates the Debian packages using CPack55 and test them using the 
Debian package checker Lintian56. Furthermore, the tests gener-
ate code testing coverage information using the --coverage option 
of the GNU C++ compiler. The resulting coverage informa-
tion is then gathered by LCOV57 and uploaded to the Codecov58  
service, which integrates the coverage report into the GitHub 
user interface. This informs the reviewer about the coverage of 
the code change, as well as the resulting coverage change of the  
whole project.

Moreover, the external code quality services lgtm59, CodeFactor60,  
and Codacy61 are integrated into the core library’s GitHub project 
and automatically run to perform code analyses using web-
hooks. A scheduled job runs the proprietary static code analysis  
tool Coverity Scan62 on the codebase once per week and reports 
the results to the developer mailing list. These tools are useful 
to find less obvious issues such as code complexity, code dupli-
cation, misspellings as well as technical issues such as unreach-
able code, code paths leading to using uninitialized variables,  
incorrect exception handling, and more.

We use publicly available GitHub Actions from the  
marketplace63 to apply such checks on less critical components:  
we validate shell scripts using shellcheck64, we validate and  

51GitHub Actions: https://github.com/features/actions

52GitLab CI/CD: https://docs.gitlab.com/ee/ci/

53clang-format: https://clang.llvm.org/docs/ClangFormat.html

54lxml: https://lxml.de/

55CPack: https://cmake.org/cmake/help/latest/module/CPack.html

56Lintial: https://wiki.debian.org/Lintian

57LCOV: http://ltp.sourceforge.net/coverage/lcov.php

58Codecov: https://about.codecov.io/

59lgtm: https://lgtm.com/

60CodeFactor: https://www.codefactor.io/

61Codacy: https://www.codacy.com/

62Coverity Scan: https://scan.coverity.com/

63GitHub Actions Marketplace: https://github.com/marketplace?type=actions

64shellcheck: https://github.com/koalaman/shellcheck, via GitHub Action ludeeus/action-shellcheck
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format Python scripts using autopep865, we validate the syntax 
of our documentation files with markdownlint66, and we check 
for broken hyperlinks using markdown- link-check67. Finally,  
we publish Python packages using twine68.

Code reviews provide an additional safety check, which can 
prevent issues that are otherwise difficult to check automati-
cally. Pull request templates provide checklists for authors and 
reviewers. Most non-trivial code contributions to preCICE since 
2018 are reviewed by at least one further core developer. The 
master branches are protected from pushing and from merging  
without reviews.

Apart from tests and quality checks, a few more operations  
contribute to maintaining the resources available to the user  
up-to-date. A GitHub Actions workflow builds and packages a 
Vagrant69 box for VirtualBox with the latest Ubuntu LTS and all 
common components and tutorials pre-installed. A similar work-
flow prepares and publishes Docker images with all the preCICE 
dependencies, images which we use for our CI70. The website of  
preCICE is also automatically generated using GitHub Pages71,  
integrating content from additional repositories (tutorials and 
adapters). Finally, a dedicated workflow periodically updates the 
Doxygen-based C++ source documentation.

7 Community
As the purpose of preCICE is to connect different simulation 
software, preCICE naturally also helps connecting research-
ers – imagine the fluid mechanics group and the solid mechanics 
group of a computational mechanics faculty with their individual  
in-house CFD and FEM codes. In the past five years, a sig-
nificant community of users has been formed around preCICE, 
with some of them also contributing back code or tutorials. The  
preDOM project72, funded by the German Research Founda-
tion, played an important role for this development. In fact, 
most of the improvements described in this paper were part of 
the project: building and packaging, adapters, tutorials, tests, 
and continuous integration, but also user documentation and  
community building.

Today, we know through forum discussions, conferences, work-
shops, and publications of more than 100 research groups using 

preCICE. Roughly one half of them are from academia, while 
the other half comes from non-academic research centers  
(e.g., the German Max Planck Institute for Plasma Physics, 
the German Helmholtz-Zentrum Hereon, the Italian Aerospace 
Research Centre, or A*STAR in Singapore) or industry (e.g., 
MTU Aero Engines or Bitron). We collect some user stories on 
our website73 and depict some highlights in Figure 26. Presumably  
half of the users apply preCICE for fluid-structure interaction  
or conjugate heat transfer applications. The other half uses  
preCICE for more uncommon setups, for example, cou-
pling of different fluid models with each other106 or coupling  
of CFD to particle methods11.

Applications and Software A non-exhaustive list of application 
fields includes mechanical and civil engineering (astronautics59,  
manufacturing processes66,69, aerodynamics23,64.107–111, urban 
wind modeling106, aeroacoustics6,112, explosions113,114), marine  
engineering22, bio engineering (heart valves115, aortic blood  
flow7, fish locomotion116, muscle-tendon systems10), nuclear  
fission and fusion reactors9,117,118, and geophysics8,12,119. Many 
users do not only use the official adapters (cf. Section 4), but 
couple further community codes or their in-house codes. A  
non-exhaustive list of available coupled software (under a  
commercial or an open-source license) includes CAMRAD II  
and TAU110, DUST23, DuMuX8,120, DUNE121, Rhoxyz22, Ateles122, 
XDEM11, and FLEXI123.

Community Building preCICE users can interact with develop-
ers and with each other through various channels. We provide  
and moderate a Discourse forum74 and a Gitter chat room75.  
The forum replaced a previously used mailing list as discus-
sions in the forum can be much better structured through  
categories, labels, and solution posts. Moreover, Discourse can 
be customized to great extent, which allows us to hand over 
moderation responsibilities to the community at a suitable pace.  
For feature requests and bug reports, we use the issue track-
ers of the different repositories on GitHub76. Moreover, we 
organize yearly mini-symposia at ECCOMAS conferences  
(ECCM-ECFD 2018, COUPLED 2019, WCCM 2020, COUPLED 
2021) and our own preCICE Workshops (preCICE Workshop  
2020 in Munich77, preCICE Workshop 2021 and 2022 online). 
The workshops include an introduction course, which we plan 

65autopep8: https://github.com/hhatto/autopep8, via peter-evans/autopep8

66markdown-lint: https://github.com/DavidAnson/markdownlint, via articulate/actions-markdownlint

67markdown-link-check: https://github.com/tcort/markdown-link-check, via gaurav-nelson/github-action-markdown-link-check

68twine: https://github.com/pypa/twine

69Vagrant: https://www.vagrantup.com/, see also Section 3.4.

70preCICE CI images: https://github.com/precice/ci-images, Docker: https://hub.docker.com/u/precice

71preCICE Website sources: https://github.com/precice/precice.github.io

72More about preDOM on our blog: https://precice.discourse.group/t/how-did-precice-get-popular/321

73preCICE community stories: https://precice.org/community-projects.html

74preCICE forum on Discourse: https://precice.discourse.group/

75preCICE chat room on Gitter: https://gitter.im/precice/Lobby

76preCICE GitHub organization: https://github.com/precice

77Aftermath of the 2020 workshop: https://precice.discourse.group/t/precice-workshop-2020-updates/40
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to further extend in the next years. Figure 27 shows a static  
growth of the preCICE community over the previous three  
to four years.

Contributions To strengthen the sustainability of preCICE, 
we encourage users to also contribute back. Example con-
tributions encompass code, tutorials, bug reports, or docu-
mentation. On our website, we provide detailed contributing 

guidelines78 while every external contribution is reviewed for 
functionality, coding practices, consistency, and usability. Our 
long-term goal is to hand over development of the official 
adapters (cf. Section 4) to the community. In recent years, the  
OpenFOAM adapter has, in particular, seen various external  
contributions125 and serves as an example of how the community 
may successfully contribute to isolated, smaller compartments  
of a software project, as they can be easier to understand and 

Figure 26. Various simulations from the preCICE community. All pictures taken from the page Community stories on precice.org. Top 
left: a shallow-water equations solver coupled to OpenFOAM124. Top right: an artificial heart valve simulated with OpenFOAM and CalculiX115. 
Bottom left: A 3D poro-mechanics model coupled to 2D fluid equations, both implemented in FEniCS119. Bottom right: a MATLAB heat 
equation solver coupled to a GPU ray-tracing software package to simulate heat conduction and radiation on the surface of the moon59.

78Contributing guidelines: https://precice.org/community-contribute-to-precice.html
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contribute to. As of July 2021, 20% (18 out of 89) pull requests 
and 26% (26 out of 100) issues in the OpenFOAM adapter 
repository have been contributed by external contributors (not  
from the academic groups of the core team). While half of 
the external pull requests were ultimately not merged, they 
still serve as proof of concept for features that were at the  
time not aligned with the direction of the project. We have 
observed that several non-merged contributions were still useful  
for the community and we expect that tooling, automation, and 
clear guidelines will increase the ratio of successful external  
contributions in the long run.

8 Conclusions
We have shown on the basis of various aspects that there is a  
tremendous gap between a working prototype software – a software  
with state-of-the-art numerical and HPC methods (preCICE in  
2016) and a sustainable and user-friendly software (preCICE 
in 2021). While the first one allows for scientific discoveries in  
scientific computing, only the latter allows for scientific dis-
coveries in application areas as well. This can also be observed  
in the user numbers of preCICE. While the software today 
has a large and vivid community of users in a wide variety of  
application areas, it hardly had any users in 2016. To bridge this 
gap, we presented necessary efforts in documentation, building,  
packaging, integration with external software, tutorials, tests,  
continuous integration, and community building. Nearly all of  
these aspects are more complicated for a multi-component 
coupling software such as preCICE than for most other scien-
tific computing software. This is not only due to the fact that  
preCICE is a library and, thus, needs another program that calls 

preCICE, but also that a coupled simulation needs by definition 
at least two different programs to be coupled. Therefore, often 
novel solutions are necessary for usually standard problems,  
such as the variety of testing concepts introduced in  
Section 6.

In forthcoming years, preCICE will undergo various extensions 
to make the software applicable beyond low-order, mesh-based,  
surface-coupled problems, such as fluid-structure interaction.  
Current work focuses on geometric multi-scale coupling (espe-
cially 1D-3D and 2D-3D mapping), dynamic coupling meshes,  
waveform iteration40, mesh-particle coupling, macro-micro 
coupling, and coupling to data-based approaches. An impor-
tant topic will also be the efficient support of volume-coupled 
problems, which requires novel ideas in all main ingredients of 
preCICE: communication, coupling schemes, and data map-
ping. To further increase the sustainability of preCICE, we 
will build on and extend the system test concept introduced in  
Section 6.3.

Data availability
Underlying data
Archived data at the time of publication is Test Setup of  
Turbine Blade Mapping Data56. It consists of test setup and data 
to reproduce results in Section 3.2. This archive contains the  
following underlying data:

•   �Files array.sbatch and test.sbatch are job scripts used to  
execute the simulations on computing cluster systems.

Figure 27. Various traffic data showing community growth over time connected to key events. Whereas new releases have a clear 
impact on GitHub traffic, conferences, such as the ECCOMAS mini-symposia (MS1, MS2, MS3), different OpenFOAM workshops (ESI, OFW), 
and the preCICE workshops (WS) have not always a clear direct impact. With the start of the preCICE forum (fall 2019) and, in particular, with 
moving the user documentation to the new website at the end of 2020, traffic is shifted away from GitHub. At the online preCICE Workshop 
2021, we used the forum to let attendees introduce themselves. This led to sustainable increase of forum traffic.
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•   �Folder meshes contains the mesh files which have coor-
dinate and connectivity information of the geometries  
used in the simulations.

•   �Folder results contains CSV files having the results  
from which the plots in Section 3.2 are generated.

•   �File README.md contains steps to run the simulations  
and generate the results

Data are available under the terms of the Creative Commons  
Attribution 4.0 International (CC BY 4.0)

Software availability
Software and source code available from: https://github.com/pre-
cice Archived source code at time of publication is preCICE  
Distribution Version v2104.019. Software in this project contain  
the following items and licenses:

•   �preCICE: LGPL-3.0 License

•   �Python bindings: LGPL-3.0 License

•   �Fortran module: LGPL-3.0 License

•   �Matlab bindings: LGPL-3.0 License

•   �OpenFOAM adapter: GPL-3.0 License

•   �deal.II adapter: LGPL-3.0 License

•   �FEniCS adapter: LGPL-3.0 License

•   �CalculiX adapter: GPL-3.0 License

•   �SU2 adapter: LGPL-3.0 License

•   �code_aster adapter: GPL-2.0 License

•   �Tutorials: LGPL-3.0 License

•   �vm: MIT License

•   �precice.github.io: CC BY 4.0 License
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This paper describes developments in the widely used, open-source preCISE library for coupling 
simulation codes. It also details development practices and community building. It is a worthwhile 
and valuable contribution. 
 
My main suggestion is to shorten the paper to better highlight the important and novel aspects. 
The paper is long, and I feel that the more important points are lost amongst standard and less 
important material. For example, the section on a virtual machine on page 16 could be reduced to 
one or two sentences. The description of each adapter in Section 4 is long and with detail, but 
without enough detail to describe each adaptor fully (which would not be reasonably possible). 
The descriptions could be considerably shorter whilst still conveying the main messages. Also, 
with careful editing the paper could be shortened considerably, even without removing any detail. 
 
The discussion on interpolation methods in Section 3.2 starts with the presumption of data 
defined at vertices. It is not clear from the text how it works with methods that do not use vertex 
degrees-of-freedom or how it works for methods where degrees-of-freedom are not point 
evaluations, or how higher-order methods are handled. It would be helpful if any limitation could 
be clearly stated, or if more general cases are supported then that could be explained. It would 
also be helpful in this section if conservation could be considered more formally. 
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the main messages of the paper, e.g. on p. 3 ". . . in the most important languages used in 
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conclusions really mean?  
 
It should be checked that all symbols are defined following their introduction in an equation.
 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow 
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets 
and any results generated using the tool?
Yes

Competing Interests: No competing interests were disclosed.
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I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 14 Sep 2022
Benjamin Uekermann, University of Stuttgart, Stuttgart, Germany 

Thank you for the thorough review and the constructive feedback. We see the point that the 
paper seems too long. We tried to address this issue in two ways: Firstly, we did indeed try 
to shorten the paper where reasonable. Section 4 had indeed too many details that users 
could also look up in the software documentation. Secondly, we now try to better guide 
readers in the introduction on what to read when. Concerning data mapping: preCICE does 
indeed expect data to be located at vertices. However, as vertices, a user could also define 
cell centers, for instance. Multiple meshes per participant are supported. preCICE does 
however not yet offer a good way how to deal with higher-order methods. We are tackling 
this issue in current work by allowing users to shift the data mapping from preCICE to the 
adapters. We added comments in the introduction of Section 3.2 to make these limitations 
and also the type of currently supported conservation clearer. We carefully reviewed the 
manuscript for unsupported assertions and value judgments and removed them.  
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Axelle Viré  
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The paper is very interesting, relevant, and well written. I suggest minor revisions.
Comment on the feasibility to couple in space of different dimensions, e.g., mapping from 
volume to surface or surface to line, and vice-versa. This is relevant for a range of 
applications but not covered at all as far as I can see. 
 

○

Is it possible to couple GPU tools or is it restricted to CPU-based models? 
 

○

Section 3.2.2 - Can you comment on the consistent or conservative character of this 
method? 
 

○

The test methodology is clearly described. But what about the review process, i.e. is there a 
review process when users or community members want to push new implementations in 
preCICE (e.g. for consistency of code syntax)? 
 

○

Checkpoints and restarts are not described it seems. I assume this is all possible and works 
well? 
 

○

Are the post-processing scripts shared as well for the tutorial cases?○

Minor editing comments:
References to bibliography are not always consistent in style, e.g., page 5 "introduced in 6". 
 

○

Page 3: 10,000s --> write in words so that the "s" is not mistaken for a unit. 
 

○

Ensure that all variables in equations are defined, even if straightforward, e.g. very first eq 
on page 5, distinction of superscripts and subscripts on page 7, etc. 
 

○

Page 7: IQN-IMVJ: time step, an idea --> add "following" before an idea.○

 
Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes
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and any results generated using the tool?
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I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 14 Sep 2022
Benjamin Uekermann, University of Stuttgart, Stuttgart, Germany 

Thank you for the thorough review and the positive words.
Comment on the feasibility to couple in space of different dimensions (...)○

We refer to such mixed-dimensional problems as geometric multi-scale coupling (following 
the definition of Quateroni et al. doi:10.1016/j.cma.2016.01.007). Such problems can already 
now be realized by implementing the data mapping between different dimensions within 
the adapter (see for example Schmidt et al. doi:10.1007/s10596-021-10120-8). We are 
currently working on dedicated geometric multi-scale data mapping methods within 
preCICE as mentioned in the conclusions. We extended this part of the conclusions.

Is it possible to couple GPU tools or is it restricted to CPU-based models?○

Yes, hybrid GPU-CPU coupling is possible. A few users have done this already. We added an 
explanation and mention some examples in the beginning of Section 3.

Section 3.2.2 - Can you comment on the consistent or conservative character of this 
method?

○

We present and compare all data mapping methods in their consistent variant. By 
transposing the corresponding system matrix a consistent method turns conservative. We 
added additional explanation in the introduction part of Section 3.2, trying to point out 
more clearly what we mean with consistency and conservation in our context and what the 
restrictions are. In addition, we comment on the realization of consistency and conservation 
in RBF data mapping methods at the end of Section 3.2.2.

The test methodology is clearly described. But what about the review process, i.e. is 
there a review process when users or community members want to push new 
implementations in preCICE (e.g. for consistency of code syntax)?

○

Every contribution is reviewed for functionality (does the code run and do the expected 
thing?), coding practices (is the code clear and reasonable?), consistency (does the 
implementation follow similar solution patterns?), and usability (is the interface intuitive and 
sufficiently documented?). Pull request templates in each project remind the authors and 
the reviewers of common issues to check. While these templates contain checklists, these 
are not extensive, to reduce the overhead in smaller contributions. We added a note in 
Section 7.

Checkpoints and restarts are not described it seems. I assume this is all possible and 
works well?

○

To restart a coupled simulation, typically all coupled codes need to read checkpoints and 
restart. preCICE directly supports this behavior without any modifications. preCICE itself, 
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however, does (currently) not write checkpoints for restarting. This means, for instance, that 
the quasi-Newton system starts from scratch again and that data mappings need to be 
recomputed. For most applications, this behavior is sufficient. If ever necessary, adding 
such a checkpoint-restart mechanism to preCICE itself should, however, be possible.

Are the post-processing scripts shared as well for the tutorial cases?○

Yes, they are. We write at the beginning of Section 4: "Such a tutorial consists of all the 
required instructions and configuration files necessary to run the coupled simulation, as 
well as convenience scripts to run, visualize, and cleanup each case."  
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