
SOFTWARE TOOL ARTICLE

 preCICE v2: A sustainable and user-friendly coupling

library [version 2; peer review: 2 approved]

Gerasimos Chourdakis 1*, Kyle Davis 2*, Benjamin Rodenberg 1*,
Miriam Schulte2*, Frédéric Simonis 1*, Benjamin Uekermann 3*,
Georg Abrams2, Hans-Joachim Bungartz1, Lucia Cheung Yau1, Ishaan Desai 3,
Konrad Eder1, Richard Hertrich1, Florian Lindner 2, Alexander Rusch 1,
Dmytro Sashko1, David Schneider 3, Amin Totounferoush 2, Dominik Volland1,
Peter Vollmer 2, Oguz Ziya Koseomur1

1Scientific Computing in Computer Science, Department of Informatics, Technical University of Munich, Garching, 85748, Germany
2Simulation of Large Systems, Institute for Parallel and Distributed Systems, University of Stuttgart, Stuttgart, 70569, Germany
3Usability and Sustainability of Simulation Software, Institute for Parallel and Distributed Systems, University of Stuttgart, Stuttgart,
70569, Germany

* Equal contributors

First published: 29 Apr 2022, 2:51
https://doi.org/10.12688/openreseurope.14445.1
Latest published: 30 Sep 2022, 2:51
https://doi.org/10.12688/openreseurope.14445.2

v2

Abstract
preCICE is a free/open-source coupling library. It enables creating
partitioned multi-physics simulations by gluing together separate
software packages.
This paper summarizes the development efforts in preCICE of the past
five years. During this time span, we have turned the software from a
working prototype -- sophisticated numerical coupling methods and
scalability on ten thousands of compute cores -- to a sustainable and
user-friendly software project with a steadily-growing community.
Today, we know through forum discussions, conferences, workshops,
and publications of more than 100 research groups using preCICE. We
cover the fundamentals of the software alongside a performance and
accuracy analysis of different data mapping methods. Afterwards, we
describe ready-to-use integration with widely-used external
simulation software packages, tests, and continuous integration from
unit to system level, and community building measures, drawing an
overview of the current preCICE ecosystem.

Keywords
multiphysics, multiphysics coupling, co-simulation, fluid-structure
interaction, conjugate heat transfer, computer simulation

Open Peer Review

Approval Status

1 2

version 2

(revision)
30 Sep 2022

version 1
29 Apr 2022 view view

Axelle Viré, Delft University of Technology,

Delft, The Netherlands

1.

Garth Wells , University of Cambridge,

Cambridge, UK

2.

Any reports and responses or comments on the

article can be found at the end of the article.

Open Research Europe

Page 1 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

https://open-research-europe.ec.europa.eu/articles/2-51/v2
https://open-research-europe.ec.europa.eu/articles/2-51/v2
https://orcid.org/0000-0002-3977-1385
https://orcid.org/0000-0001-8602-8124
https://orcid.org/0000-0002-3116-0133
https://orcid.org/0000-0003-3390-157X
https://orcid.org/0000-0002-1314-9969
https://orcid.org/0000-0002-2552-7509
https://orcid.org/0000-0002-2279-2796
https://orcid.org/0000-0002-6944-5660
https://orcid.org/0000-0002-3487-9688
https://orcid.org/0000-0003-1770-1711
https://orcid.org/0000-0002-2138-1776
https://doi.org/10.12688/openreseurope.14445.1
https://doi.org/10.12688/openreseurope.14445.2
https://open-research-europe.ec.europa.eu/articles/2-51/v2
https://open-research-europe.ec.europa.eu/articles/2-51/v1
https://open-research-europe.ec.europa.eu/articles/2-51/v2#referee-response-29131
https://open-research-europe.ec.europa.eu/articles/2-51/v2#referee-response-29132
https://orcid.org/0000-0001-5291-7951
http://crossmark.crossref.org/dialog/?doi=10.12688/openreseurope.14445.2&domain=pdf&date_stamp=2022-09-30

Corresponding author: Benjamin Uekermann (benjamin.uekermann@ipvs.uni-stuttgart.de)
Author roles: Chourdakis G: Methodology, Software, Supervision, Visualization, Writing – Original Draft Preparation, Writing – Review &
Editing; Davis K: Software, Writing – Original Draft Preparation, Writing – Review & Editing; Rodenberg B: Methodology, Software,
Supervision, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Schulte M: Conceptualization, Funding
Acquisition, Project Administration, Supervision, Writing – Original Draft Preparation, Writing – Review & Editing; Simonis F:
Methodology, Software, Supervision, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Uekermann B:
Conceptualization, Funding Acquisition, Methodology, Project Administration, Software, Supervision, Visualization, Writing – Original
Draft Preparation, Writing – Review & Editing; Abrams G: Software; Bungartz HJ: Funding Acquisition, Supervision; Cheung Yau L:
Software; Desai I: Software, Writing – Review & Editing; Eder K: Software; Hertrich R: Software; Lindner F: Methodology, Software,
Supervision; Rusch A: Software; Sashko D: Software; Schneider D: Software; Totounferoush A: Software; Volland D: Software; Vollmer
P: Software; Koseomur OZ: Software
Competing interests: No competing interests were disclosed.
Grant information: This project has received funding from the European Union’s Horizon 2020 research and innovation programme
under the Marie Skłodowska-Curie grant agreement No [754462]; the International Graduate Research Group on Soft Tissue Robotics
(GRK 2198/1); the DFG project preDOM (project number 391150578); the DFG SFB 1313 (project number 327154368); SPPEXA, DFG's
Priority Program 1648 -- Software for Exascale Computing; the Competence Network for Scientific High Performance Computing in
Bavaria (KONWIHR) by the Bavarian State Ministry of Science and the Arts; the German Federal Ministry for Economic Affairs and Energy
(BMWi) projects preCICE-ATHLET and geoKW; and the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) by
funding -- EXC2075 -- 390740016 under Germany's Excellence Strategy.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Copyright: © 2022 Chourdakis G et al. This is an open access article distributed under the terms of the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
How to cite this article: Chourdakis G, Davis K, Rodenberg B et al. preCICE v2: A sustainable and user-friendly coupling library
[version 2; peer review: 2 approved] Open Research Europe 2022, 2:51 https://doi.org/10.12688/openreseurope.14445.2
First published: 29 Apr 2022, 2:51 https://doi.org/10.12688/openreseurope.14445.1

This article is included in the Excellent Science

gateway.

Open Research Europe

Page 2 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

mailto:benjamin.uekermann@ipvs.uni-stuttgart.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/openreseurope.14445.2
https://doi.org/10.12688/openreseurope.14445.1
https://open-research-europe.ec.europa.eu/gateways/excellentscience
https://open-research-europe.ec.europa.eu/gateways/excellentscience

1 Plain language summary
Computer models are a key component of almost every research
in science and engineering. They back up and connect the two
traditional research methods; theory and experiment. Often,
however, individual computer models are not enough to under-
stand and describe phenomena and processes in science and
engineering. Instead, multiple computer models need to be
combined. Combining these models (also referred to as
‘coupling’) is what the software package preCICE does.

As of 2022, over 100 research groups from various fields use
preCICE to couple their computer models. This includes, for
example, research groups in aerospace engineering, biomedi-
cal engineering, and climate and environmental research. Thus,
preCICE’s sustainability (Can I reproduce my research results
using preCICE in five years?) and usability (How much do I
need to learn before I can start doing my research with
preCICE?) are critical factors.

How this sustainability and usability has drastically been
improved during the past five years, is the topic of this paper. It
summarizes the work done by the authors (the development
team of preCICE), including for example automatic test-
ing, documentation, accuracy analysis of the methods imple-
mented in preCICE, and ready-to-use integration with commonly
used computer models.

2 Introduction
Flexible, modular simulation environments are key to many
important application fields such as aerospace engineering1,
biomedical engineering2, climate and environmental research3,
and many others. The need to provide smart mathematical and
software solutions to combine different aspects of such
simulations in a modular way is an emerging challenge4.
With increasing complexity of the respective software envi-
ronments, the usability and maintainability of the involved
software components become a critical issue, which is addressed
by a growing research software engineering community (see,
e.g., a recent position paper of the German community5).

We present the software package preCICE, which enables
black-box coupling of separate solvers for different types of
numerical models. It has originally been developed for

modular, so-called partitioned, simulations of fluid-structure
interactions, i.e., the combination of a flow solver with a struc-
tural mechanics solver via a common surface at which forces
and displacements are exchanged. Over the past ten years,
preCICE has developed into a far more general tool for parti-
tioned simulations, which can handle different types of coupling
(weak/strong, explicit/implicit, surface/volume) and any type
of equations. Examples range from fluid-structure-acoustics
interactions6, over blood flow simulation in the human body7,
free-flow porous media coupling8, conjugate heat transfer9,
muscle-tendon system simulations10, flow-particle coupling11,
to coupling between subsurface flow and planning tools for
geothermal energy infrastructure12. The coupling is not
restricted to a pair of solvers, but has been extended to enable
multi-component coupling of arbitrarily many solvers13.

preCICE offers comprehensive functionality far beyond simple
data exchange: It provides (i) a variety of mapping methods for
data transfer between non-matching meshes of different solv-
ers, (ii) quasi-Newton acceleration methods for iterative implicit
coupling, and (iii) bottleneck-free point-to-point communica-
tion between processes of parallel solvers. preCICE was origi-
nally designed with surface coupling in mind, but most features
can and have been used for volume coupling as well. All cou-
pling numerics and communication are implemented in a library
approach and are fully parallelized. The library can be used
via a high-level application programming interface (API) in a
minimally-invasive way (from the perspective of the coupled
solvers).

The first version of preCICE, as presented by Bernhard
Gatzhammer in his dissertation14, used a server process per cou-
pled solver and was, thus, not very efficient for the coupling
of parallel solvers. Later works15–17 transformed preCICE to a
fully parallel library with point-to-point communication, which
shows good scalability on ten thousands of compute cores.
A first overview paper of preCICE was published in 201618,
summarizing basic functionality, the API, and the user-specific
configuration as well as showing example applications and vali-
dation cases. Semantic versioning of preCICE was introduced
in 2017.

In this paper, we summarize new developments from 2016 to
2021, i.e., from the first reference paper18 to the release v2.2,
which is part of the first preCICE distribution v2104.019 – a
complete ecosystem of preCICE components. We present
an overview of the functionality of preCICE in Section 3, in
particular the numerical coupling methods, i.e., quasi-Newton
iterations and data mapping. We complement the description of
methods for data mapping with a performance and accuracy
study using realistic 3D turbine blade meshes. Section 3, in
addition, gives details on the installation process of preCICE.
Beyond the core of preCICE, we describe the newly-developed,
ready-to-use adapters20 for many widely-used simulation software
projects in Section 4. Section 5 introduces a simple conju-
gate heat transfer (CHT) scenario and a simple fluid-structure
interaction (FSI) scenario as illustrative examples on how to
use preCICE with any of these simulation software projects,
followed by the presentation of a systematic multi-level
testing infrastructure in Section 6. In the past years, preCICE has

      Amendments from Version 1
Besides fixing typographic errors and the citation style, we
shortened the manuscript wherever reasonable as suggested by
the reviewers: For instance, we removed the algorithm sketching
the data mapping error computation and we shortened the
text in Section 4 (Official Adapters) significantly. Additionally,
we added a paragraph to the introduction to better guide
readers on what to read when. We tried to reduce ambiguity
of statements, unsupported assertions, and value judgments
in several places. Finally, we added more details about the
consistent and conservative character of the implemented data
mapping methods and discuss their limitations.

Any further responses from the reviewers can be found at
the end of the article

REVISED

Page 3 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

become a widely used software ecosystem, for which we have
built up a community of users, as we show in Section 7.

Please note, that not all of these sections need to be read at
once and neither in the given order. For readers already famil-
iar with preCICE, it is safe to skip Section 3. For readers new
to preCICE, it can instead be sufficient to only read Section 3
in the first go, potentially followed by part of Section 4 and
Section 5. Section 4 is mainly meant as an overview of all avail-
able adapters. It is sufficient to only read those that you intend
to use. Finally, Section 6 and Section 7 are rather independent of
the rest of the paper.

Our description focuses on (i) usability (by providing robust
numerical choices, the multitude of ready-to-use adapter codes,
well-structured documentation, and easily-accessible illustrative
examples), (ii) reliability (by the systematic multi-level testing
concept), and (iii) sustainability (by continuous integration,
well-defined development and release cycles and a concept to
involve the community in the software development). For a
more classical description of preCICE including classical valida-
tion with benchmarks, we refer the reader to the first reference
paper18. Performance-focused publications17,21 also demonstrate
recent performance and scalability improvements. The contribu-
tions of this paper enable new scientific insights in the research
fields of our users, but also provide new experiences in scien-
tific software engineering. Results for various applications run
with preCICE have been published in many other papers such
as7–9,22,23 (see also Section 7).

Naturally, preCICE is not the only general-purpose coupling
software that has been developed during the past decades. In the
following short summary of related tools, we focus particularly
on user-focused and open-source software (i.e., we do not focus
on in-house or commercial coupling software, e.g., MpCCI24).

There is a number of more multi-scale oriented tools, such as
Amuse25, MuMMI26, MUSCLE 327, MaMiCo28, or MUI29. Often,
the categories of use cases are not strict. MUI, for example, has
recently also been used for fluid-structure interaction30. At the
same time, current work on preCICE aims towards certain
multi-scale coupling patterns (cf. Section 8). A good review on
multi-scale coupling software is provided in Groen D, et al.31.
For climate simulations, a number of specialized tools are avail-
able, for example OASIS3-MCT32, YAC33, and C-Coupler234.
In principle, the term ’coupling’ is not well-defined. For exam-
ple, software such as pyiron35 or the Kepler Project36 are referred
to as coupling software as well, whereas they refer to work-
flow coupling and not a strong coupling between different
simultaneously running simulations.

The two software projects most similar to preCICE are presum-
ably DTK37 and OpenPALM38. DTK offers an API that targets
lower-level operations compared to preCICE. Its main job is
to map and communicate data between different meshes in
parallel. The implementation of the actual coupling logic is left
to the user, which leads to greater flexibility, but also to more
development effort for the user. OpenPALM employs a similar
API, provided by CWIPI. The front end of OpenPALM, however,
provides a higher-level API that includes coupling logic. On
top, a graphical user interface is available to configure and
steer coupled simulations. The largest difference of preCICE
compared to DTK and OpenPALM is presumably the large
number of ready-to-use adapters to widely-used simulation
software packages (e.g., OpenFOAM, SU2, FEniCS, deal.II, or
CalculiX) (cf. Section 4).

3 The preCICE library
In this section, we present the core library of preCICE in a
nutshell. Figure 1 visualizes the concept and basic functional
components of preCICE. In the figure, several types of simulation

Figure 1. Concept and basic functional components of preCICE. Components that are work in progress and not yet released are shown
as faded (time interpolation).

Page 4 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

codes are coupled: computational fluid dynamics (CFD)
solvers, finite-element method (FEM) solvers, in-house solvers,
and particle solvers. Please note that we use these types
as examples to introduce the overall concept, not as strict
non-overlapping categories. In the following, we refer to coupled
simulation codes as participants of a coupled simulation. The
glue code between a participant’s code and the preCICE library
is called adapter. Depending on the participant, an adapter can
be a module or a class of the participant’s code or a complete
stand-alone software, which uses some callback interface of
the participant. In some cases, an adapter can also be a sophisti-
cated script that calls the participant as well as preCICE, but such
a software design contradicts the main idea behind the library
approach of preCICE to some extent. preCICE comes with
several ready-to-use adapters, which are listed in the picture.
Not all adapters, though, feature the same level of maturity.
Users of preCICE can develop adapters for their own (in-house)
codes by using the preCICE API, which is available in many
important languages used in scientific computing. An adapter
is responsible for what we call coupling physics, meaning how
to translate nodal coupling values from preCICE into boundary
conditions or forcing terms and, reciprocally, how to extract
nodal coupling values from internal fields to provide them to
preCICE. If we say that an adapter can handle a certain type
of coupling physics, for example conjugate-heat transfer, it
basically means which type of variables, e.g., temperature or
heat flux, the adapter is able to read and write.

preCICE itself has no notion of physics. Instead, preCICE
itself is responsible for the technical aspects of coupling and
the coupling numerics, depicted in the middle of Figure 1.
We now give a first brief overview of these components going
from top left to bottom right: (i) Coupled participants are sepa-
rate executables, potentially running on different nodes in a
heterogeneous compute cluster with independent MPI commu-
nicators. For instance, a participant running on multiple CPU
nodes could be coupled to a participant running on multiple
GPU-nodes39. preCICE handles the communication between
these executables. The communication is asynchronous and
completely parallel. Only those ranks of the participants that
need to exchange coupling data communicate with each other.
Technically, the communication is based on either MPI Ports
or TCP/IP, configurable at runtime; (ii) preCICE implements
coupling schemes. Coupling schemes, on the one hand, define
the logical coupling flow, i.e., which participant sends which data
to which other participant and how the execution of time steps
is synchronized between the participants. On the other hand,
coupling schemes comprise acceleration methods for implicit
coupling such as Aitken under-relaxation or quasi-Newton
methods; (iii) Moreover, preCICE allows to map coupling data
between non-matching and non-conforming coupling meshes.
To this end, the user can choose between projection-based
methods (nearest-neighbor or nearest-projection) or radial-basis
function interpolation; (iv) Finally, preCICE also handles
interpolation in time. Currently, only plain sub-cycling is
supported, but higher-order interpolation is under development40
and will be available in future releases.

Please note that, even though Figure 1 depicts a significant
green box in the middle, there is no central server-like instance

running, even for parallel simulations. preCICE uses a pure
peer-to-peer library approach. The only executables that are
started are the participants, which all call preCICE.

The current section describes the main concepts of the core
library and is structured as follows. In Section 3.1, Section 3.2,
and Section 3.3, we describe the methods preCICE uses for
coupling schemes, data mapping, and communication, respec-
tively. Different options to get and, if necessary, build preCICE
are listed in Section 3.4. Finally, Section 3.5 explains the API
and the runtime configuration of preCICE.

3.1 Coupling schemes and acceleration
Coupling schemes and acceleration methods are at the very
center of the preCICE core and define the coupling flow. As they
have been studied in numerous publications (e.g., 41–43), we
restrict the description to a short summary showcasing which
combinations of coupling options and acceleration schemes lead
to robust and efficient partitioned simulations.

The coupling options can be configured at runtime. preCICE
distinguishes: (i) uni-directional or bi-directional coupling,
i.e., data dependencies between the participants in one direction
only (example: full flow simulation coupled to an acoustic far
field, where the acoustic far fields receives background velocity
and pressure values as well as acoustic perturbations at the
coupling interface, but we do not observe acoustic waves
traveling back into the flow region) or data dependencies in both
directions (e.g., fluid-structure interaction); (ii) explicit or
implicit coupling, i.e., execution of each participant once per
time step or execution of multiple iterations per time step, such
that the values at the end of the time step fulfil all coupling
conditions; and (iii) parallel or serial coupling, i.e., simultaneous
or one-after-the-other execution of participants.

Uni-directional coupling requires data transfer only from one
participant to the other. Thus, only an explicit coupling makes
sense in this case, which can, however, be both serial or
parallel. For bi-directional coupling, we have four different
coupling scheme options: (i) parallel-explicit, (ii) serial-explicit,
(iii) parallel-implicit, (iv) serial-implicit. We show the six
different resulting coupling schemes in Figure 2.

In the following, we focus on two non-trivial aspects of
coupling: the coupling of more than two participants (multi-code
coupling) and the choice of suitable convergence acceleration
schemes for implicit coupling.

Multi-code coupling For multi-code coupling, coupling
schemes can be configured in two different ways: (i) for each
pair of participants separately or (ii) as an overall multi-coupling
scheme. For (i), theoretically, all combinations of coupling
options are possible. However, combinations of several pairwise
implicit coupling schemes have been shown to be numerically
unstable13. Still, pairwise coupling can be the best option for
some combinations of explicit and implicit coupling. One
such example is the extension of the fluid-acoustics example
mentioned above6: a bi-directional, implicit, and serial cou-
pling of a structure solver with a flow solver, combined with
a uni-directional, explicit, and parallel coupling of the flow
solver to the acoustics solver (see Figure 3). To equally balance

Page 5 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

Figure 2. Different coupling options in preCICE for two participants S1 and S2 defined by combinations of (i) uni-directional
or bi-directional (data transfer between two participants only in one or in both directions); (ii) explicit or implicit (execution of
both participants once per time step or iterative solution of a fixed-point equation); (iii) parallel or sequential (simultaneous
or one-after-the-other execution of two participants). A symbolizes a convergence acceleration method.

Figure 3. Example for a pairwise multi-code coupling: bi-directional implicit sequential coupling between a structure solver
and a flow solver (assuming three iterations per time step) and uni-directional explicit parallel coupling between the flow
solver and an acoustics solver. The ExaFSA project report6 presents more details on the required data buffering allowing to achieve
parallel efficiency by overlapping the acoustic far field solver with the fluid-structure iterations of the next time step.

computational load, this overall scheme requires buffering of
the data to be communicated to the acoustics solver, which
is another feature provided by preCICE6. In contrast to pair-
wise coupling, for multi-coupling schemes, the only reasonable
realization is parallel coupling, i.e., their combined input and
output can be used in the coupling acceleration for implicit
coupling as described below.

Acceleration of implicit coupling iterations Implicit parts of
the coupling schemes described above always require solving a
fixed-point equation

() .=H x x

To give some example, consider serial coupling of two partici-
pants S1 : x1 ↦ x2 and S2 : x2 ↦ x1 or the parallel multi-coupling
of three participants S1 : (x2, x3) ↦ (y2, y3), S2 : y2 ↦ x3, and
S3 : y3 ↦ x3. The corresponding fixed-point equations
read

, ,() (),

() and () ,

() .

 = 
 

= = 
 = 

�

S x x y y

S S x x S y x

S y x

1 2 3 2 3

2 1 1 1 2 2 2

3 3 3

If multiple coupling data vectors are combined in a single
fixed-point equation as in the last example, it is numerically

Page 6 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

beneficial to bring all data to the same scale by an automatic
weighting (called preconditioner in preCICE15).

The pure fixed-point iterations can be enhanced with an accel-
erator A, which uses all input and output information of the
operator H collected in previous iterations:

(,..., , (),..., ()).+ =x x x H x H x1 0 0k k kA

The simplest acceleration scheme is Aitken’s under-relaxation
as presented, e.g., by Küttler et al.44. It reuses only information
from the last iteration. For most applications, quasi-Newton
schemes

prev prev(,..., , (),..., ()) () ()= + − −�
kx x H x H x x W J V ® J R x0 0k k k k k

kA (1)

are significantly more efficient and robust15. Here, αk is a
coefficient vector, �xk ≔ H(xk), R(xk) ≔ H(xk) − xk. We use the
matrix Jprev to include knowledge about the inverse Jacobian
already achieved in previous time steps45. In the classical
quasi-Newton methods for fluid-structure interaction as intro-
duced by Degroote et al.46, Jprev is zero. The matrices V

k
 and

W
k
 collect residual and value differences throughout previous

iterations:

[, ,...,], with ,

[, ,...,], with () ()

k

k

= ∆ ∆ ∆ ∆ = −

= ∆ ∆ ∆ ∆ = −

� � � � � �

k

k k k k i
ik k

k k k k i
ik

W x x x x x x

V r r r r R x R x

0 1 -1

0 1 -1

with the number k of iterations done so far1. In practice, the left-
most columns of V

k
 and W

k
 can always be dropped in cases

where several iterations (k) are required for convergence.

Equation (1) is an approximation of the modified Newton
iteration

(),k+ −= − ��k k

R
x x J R x1 1

where −
�R

J 1 is the inverse Jacobian of �R : �xi → R(xi). To

derive Equation (1), −
�R

J 1 is approximated by the solution
−
kJ
1 = (W

k
– JprevV

k
) T

kV (V
k
 T

kV)−1 + Jprev of the multi-secant
equation2

−
kJ
1 V k = Wk under the norm minimization

 ‖ −
kJ
1 − Jprev‖F ← min, (2)

where ‖ · ‖
F
 denotes the Frobenius norm. In the following, we

shortly present the main two quasi-Newton classes, IQN-ILS
and IQN-IMVJ, provided by preCICE, and we introduce the
so-called filtering that can improve the robustness of both.

IQN-ILS For Jprev = 0, we get the classical interface quasi-
Newton inverse least squares method as introduced by Degroote
et al.46. For this approach, re-using information from previous
time steps by adding further columns to V

k
 and W

k
 can help speed

up the coupling iterations significantly. However, the optimal
number of reused time steps strongly depends on the involved
equations, on the discretization of the respective fields and even
their mesh resolution43.

IQN-IMVJ For Jprev chosen as the last inverse Jacobian
approximation of the previous time step, an idea adopted from
the work of Bogaers et al.45 in later studies42,47, we get the method
called interface quasi-Newton inverse multi-vector Jacobian. A
variety of restart mechanisms allows us to implement this
method with linear complexity in the number of coupling
unknowns by avoiding storing the full matrix Jprev. Only low-rank
additive components are stored and the respective sum is re-set
after a chunk of time steps. The size of these chunks is configura-
ble by the user, but its influence on the convergence behavior is
not very significant43,48.

Filtering Since linear dependencies of columns in V
k
 cannot

be avoided in both IQN-ILS and IQN-IMVJ, we implemented
various filtering algorithms, which automatically delete columns
that cause (near) linear dependencies. This eliminates both
contradicting and outdated information49.

All quasi-Newton variants are implemented in a fully-parallel
way based on parallel QR-solvers for the calculation of com-
ponents of −

kJ
1 and the matrix-vector product −

kJ
1 R(xk). We

do not present numerical results in this section, but refer to
separate publications15,41,43 for detailed comparisons of quasi-
Newton variants and examples showcasing their efficiency and
robustness.

3.2 Data mapping
In a coupled simulation, participants exchange data via coupling
meshes. The coupling meshes of each pair of participants
discretize either the common coupling interface (for surface
coupling) or a common volume (for volume coupling). However,
the discretization approaches of the two participants are usually
different, leading to non-matching meshes. In order to transfer
physical variables between these non-matching meshes, we
use data mappings.

In the current version of preCICE, provided data mapping meth-
ods are restricted to methods that work in a black-box way on
point clouds (nearest-neighbour mapping, radial basis func-
tion interpolation) or with a minimum of additional information
(nearest-projection mapping). A flexibilization of the mapping
concept to facilitate also customized mapping, e.g., for
high order spatial discretizations, is work in progress and
will be provided in future versions.

In the following subsection, we shortly describe the types
of data mapping implemented in preCICE and give some
results showcasing their performance and accuracy.

Let the dimension of the scenario d be two or three and let us
consider a data mapping from the coupling mesh of participant

1k ≥ 1. A plain or underrelaxed fixed-point iteration can be used to start the procedure.

2corresponding to the coefficient vector α
k
 = −

T

k
V (V

k

T

k
V)−1 R(xk).

Page 7 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

S1 to the coupling mesh of participant S2. The minimum mesh
information required (during initialization) is the vertex coordi-
nates of both meshes, which we define as:

{ ,..., } with , { ,..., } with .= ∈ = ∈� � � � � �� �d d
n nx x x x x x1 1 2 2 2
1 21 2

1
1 1

SSS S S S
S Si iM M

Data mapping aims to map the vector (, ,...,)=
�S S S S T

nv v v v
1 1 1 1

1 2 1
 of

values at the vertices in M
S1

 to the vector (, ,...,)=
�S S S S T

nv v v v
2 2 2 2

1 2 2

of values at the vertices in M
S2

.

All data mapping methods in preCICE are provided in a
consistent and in a conservative variant. Consistent mapping
operations exactly reproduce constant data at M

S1
 on M

S2
.

Conservative mapping methods preserve the sum of all val-
ues. Consistent mapping schemes are, thus, used for physi-
cal variables such as displacements, velocities, pressure, or
stresses, whereas conservative methods have to be used for
cumulative variables, such as forces. Note that higher-order
consistency or more sophisticated conservation properties like
conservation of integral values in the particular higher-order
finite element basis of a solver is currently not feasible due to
the black-box character of the mapping. However, the above-
mentioned ongoing flexibilization is going to help tackle this
restriction as well.

Data mapping can be written as a linear mapping

=� �1 2S S
Mv v

with a matrix M ∈ ℝn2 × n1. For a consistent mapping, the sum
of entries in each row of the mapping matrix M has to be one,
whereas, for a conservative mapping, the requirement is

=∑ ∑1 2S S
i iii

v v , and thus, the sum of entries in each column of
M has to be one. Therefore, conservative mapping methods are
generated by transposing the mapping matrix of a consistent
mapping. Throughout this section, we restrict our explanation
to consistent data mapping. For details on both variants, the
reader is referred to mapping-focused publications14,16,50.

3.2.1 Projection-based data mapping. Two projection-based
mappings are available in preCICE: nearest-neighbor and
nearest-projection. The nearest-neighbor mapping establishes
an association between each vertex

�
2S

ix of the output mesh
M

S2
, with the spatially nearest vertex

()

�
1S

j i
x on the input mesh

M
S1

.

The mapping is then simply defined as

() .= 12 SS
j ii

vv

The nearest-projection mapping uses connectivity information
between multiple vertices on the input mesh to interpolate to
a vertex on the output mesh. To calculate the value at an output
vertex

�
2S

jx , we calculate a projection point p(
�

2S
jx) on the entities

of the input mesh, interpolate a value to this projection
point, and copy this to the output vertex

�
2S

jx . The projection
point p(

�
2S

jx) is a projection on a triangle of the input mesh
defined by participant S

1
. If such a triangle does not exist, we

determine p(
�

2S
jx) via orthogonal projection to an edge in the

coupling mesh of participant S1 or, as the last option, as the
closest vertex in the mesh of participant S1. This requires a
search operation over triangles and potentially edges and verti-
ces of the mesh of participant S

1
 for each output vertex

�
2S

jx . See
Figure 4 for the relation between mesh entities of the two
meshes. In the second step of the mapping, we use barycen-
tric interpolation (if p(

�
2S

jx) is in a triangle), linear interpolation
(if p(

�
2S

jx) is on an edge) or the respective vertex value (if
p(
�

2S
jx) is a vertex) to determine a value at p(

�
2S

jx) and then use
this value as 2S

jv at the output point. In other words, the inter-
polation is a combination of a second-order accurate interpola-
tion inside a triangle in S1 and a first-order accurate extrapolation
in normal direction, i.e., the error is O(h2) + O(δ) with the mesh
width h of the mesh of S1 and the normal distance δ between
the two coupling meshes. In cases where the mesh of participant
S1 does not provide suitable mesh connectivity information, a
simple projection onto the closest vertex is performed, i.e., the
nearest-projection mapping falls back to nearest-neighbor.

Figure 4. Basic principles of nearest-neighbor and nearest-projection mapping: (a) Transfer of each value ()
1S

j i
v at the nearest

neighbor
()

�
1S

j i
x in the coupling mesh of S1 to the vertex � 2S

ix in the coupling mesh of S2. (b) Projection of points � 2
1
Sx , � 2

2
Sx and � 2

3
Sx

of the coupling mesh of S2 to a triangle, an edge, and a vertex, respectively, of the coupling mesh of S1.

Page 8 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

Both nearest-neighbor and nearest-projection mapping require
neighbor search between mesh entities of both participants.
To implement this search efficiently, we generate r-start
index-trees for vertices, edges, and triangles of meshes using
the Geometry package of Boost3. The complexity of generating
the index tree is O(n log(n)) and the complexity of each nearest
neighbor query is O(log(n)) if n is the number of entities in the
involved meshes.

3.2.2 Data mapping with radial basis functions. Radial basis
function (RBF) mapping uses a linear combination of radially
symmetric basis functions centered at vertices

�
1S

ix of the
input mesh to create a global interpolation function, which is
afterwards sampled at the vertices of the output mesh

�
1S

ix . In
order to ensure that constant and linear functions are interpolated
exactly, an additional global first-order polynomial term q(

�
x) is

added to the interpolant s : ℝd → ℝ:

()
=

() = || || () ,⋅ − +∑� � � �
¸ Á q

1
1

2
1

S
n

ii
i

s x x x x

where the radial basis function is given by ϕ, and the poly-
nomial term q(�x) = β0 + β1x1 + . . . + β

d
x

d
. Several basis func-

tions available in preCICE are listed in Table 1. See Figure 5
for a schematic view of the relation between the vertices of

both coupling meshes and the construction and evaluation of the
interpolant.

The set of coefficients λ
i
 ∈ ℝ, i = 1, ..., n

S1
 is determined such

that the interpolation conditions

() = = 1, ,∀�
…1 1

1
S S
i is x v i n

are fulfilled. The addition of the polynomial term leads to an
under-determined system which is regularized by the polynomial
conditions

and .
= =

⋅ = =∑ ∑�S S
n n

¸ ¸S
ii i

i i

x
1

1 1
1

1
0 0

In matrix notation, this leads to the linear system

,T β

    
=           

� �
� �

C Q ¸

Q

1

0

S
v

0

where
�
¸ = (λ1, λ2, . . . , λ

n1)
T, β = (β0, β1, . . . , β

d
)T,

()()
, ,, =

|| ||= −
…

� �
Á 1 1

1
2

1

S S
i j

ji n
C x x ∈ ℝn1 × n1,

and (),, , ,
, , ,

=
=

…
…Q 1 1

1
1 1

1 S S
di i i n

x x ∈ ℝn1 × (d +1)

Table 1. Radial basis functions available in preCICE (excerpt). Local basis functions
have a support radius r, i.e., ϕ (|| ||

�
x 2) = 0 for || ||

�
x 2 > r. C-TPS use normalized variables

ξ = || ||
�
x 2/r and are set to zero for ξ > 1. We enforce a finite support radius for Gaussians

by setting the basis function to zero when falling below a threshold of 10−9 51. For a given
support r, we can, thus, compute the necessary shape parameter ζ.

Basis Function Support

Gaussians exp(−(ζ·|| ||
�
x)2) Local

Global Thin Plate Splines (G-TPS) || ||
�
x 2 log(|| ||

�
x) Global

Compact Thin Plate Splines C2 (C-TPS) 1 − 30ξ2 − 10ξ3 + 45ξ4 − 6ξ5 − 60ξ3 log ξ Local

Figure 5. Simplified one-dimensional view of the generation of the interpolant and the evaluation at the target point
�

2S
ix

based on a linear combination of Gaussian basis functions with support radius r, neglecting the global polynomial.

3Boost C++ libraries: https://boost.org/.

Page 9 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

https://boost.org/

and, finally, the mapping reads

() T

−   
=        

�� � � �
C Q

C Q
Q

1
2

1

0

S
S v

v
0

with ()() , ,
, ,

=
=

|| ||= − …
…

� �� Á 2 1

2
1

2 1
1

S S
i j i n

j n

C x x ∈ ℝn2 × n1,

(),, , , ,
, , ,

=
=

…

�Q 2 2 2

2
21 3 1

1 S S S
i i i i n

x x x ∈ ℝn2 × 4.

Local basis functions result in a sparse matrix C. However, the
polynomial term matrix Q is always densely populated, which
hampers the favorable properties of the sparse matrix. Solv-
ing the polynomial term separately in a least squares approach
via QR-decomposition of the matrix Q capitalizes on the spar-
sity of the matrix C. For a full description of this separated
polynomial approach, a separate publication is available51.

As radial basis functions are radially symmetric in all spatial
dimensions, distances between the two involved coupling meshes
normal to a coupling surface do not have to be explicitly tack-
led, in contrast to the nearest-projection method. However, the
accuracy of the RBF mapping decreases with an increasing
gap or overlap between the two meshes of S1 and S2. In addi-
tion, the RBF mapping with local basis functions suffers from a
trade-off between high accuracy (achieved for basis functions
with wide support) and feasible conditioning of the linear
system (only given for moderate support width). We address the
latter to some extent by scaling the interpolant with the inter-
polant of the constant unit function, which allows us to use a
smaller support radius without deteriorating accuracy51,52.

The RBF data mapping is implemented using either (depend-
ing on configuration) an iterative generalized minimal residual
method (GMRES) solver from PETSc53 in every mapping step,
or an initial dense QR-decomposition from Eigen54 followed
by a matrix-vector product and a backward substitution in every
mapping step. While the GMRES solver is fully parallelized, the
QR-decomposition uses a sequential computation on a single
rank.

The RBF mapping as described here is consistent, i.e.,
exactly reproduces constant input if the interpolation problem
is solved exactly. In this case, the constant part of the poly-
nomial is the exact and correct solution. Otherwise, we get
consistency only up the solver accuracy of the GMRES solver.
Similar arguments hold for the conservative variant which
is realized by a formal transposition of the mapping matrix
translated into respective solver steps16.

3.2.3 Numerical and runtime performance. We compare
the various data mapping methods in terms of accuracy and

computational demand using the Artificial Solver Testing
Environment (ASTE)4. ASTE imitates data input and out-
put of participants coupled via preCICE in an artificial set-
ting. In our test setup, two ASTE participants, S1 and S2, are
coupled via preCICE. Both define individual surface meshes
of the same geometry. We then use an analytical test function,

() . cos (()) ,= + ⋅ + +�
1 2 30 78 10f x x x x

to set values on M
S1

. We compute a single consistent mapping
from M

S1
 to M

S2
 and measure errors on M

S2
 with a discrete

l2-norm,

() .()
=

 
−  ∑ �2 2

1
22

1

1 S S
n

ii
i

v f xn

As test geometry, we use a wind turbine blade5. We use GMSH55
to generate almost uniform surface meshes with different
resolutions as listed in Table 2. In Figure 6, we visualize the
geometry, different meshes, and the test function.

We run the mapping tests on the thin-nodes partition of
SuperMUC-NG, hosted at the Leibniz Supercomputing Centre.

4ASTE branch used for these tests: https://github.com/precice/aste/tree/mapping-tests

5Wind Turbine Blade created by Ivan Zerpa https://grabcad.com/library/wind-turbine-blade--4

Table 2. The meshes used for the mapping
tests sorted from coarse to fine. Bold
typesetting indicates the output meshes
(associated to participant S2). All other meshes
are used as input meshes (associated to
participant S1).

h Vertices Triangles Series

0.03 438 1007 coarse

0.02 924 2027 coarse

0.01 3458 7246 coarse

0.009 4302 8970 coarse

0.008 5310 11025 coarse

0.006 9588 19712 coarse

0.004 21283 43352 fine, coarse

0.003 38112 77271 fine

0.002 84882 171319 fine

0.0014 172803 347815 fine

0.001 338992 681069 fine

0.0007 691426 1387249 fine

0.0005 1354274 2714699 fine

Page 10 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

https://github.com/precice/aste/tree/mapping-tests
https://grabcad.com/library/wind-turbine-blade--4

Each thin-node contains two 3.1GHz Intel Xeon Platinum
8174 (SkyLake) processors with a total of 48 cores and 96GB
of system memory per node. The tests used the Intel Omni-Path
interconnect as primary network connection. We run partici-
pant S1 on a single node (48 MPI ranks) and participant S2

on two nodes (96 MPI ranks) as participant S2 computes the
actual mapping. Runtime is the maximum of a given event over
all ranks of S2

6 and memory is the sum of the peak memory
usage of all ranks of S2. These results are in addition aver-
aged over five runs. For the RBF data mapping variants, we use
GMRES as a linear solver with a relative convergence thresh-
old of 10−6, except for G-TPS, where we use the sequential
QR-decomposition.

We compare the data mapping methods in two series of com-
putations. The first, coarse series is based on meshes with
h ≥ 0.004, where participant S2 always uses h = 0.009 and par-
ticipant S1 varies the value of h through all other values of the
series listed in Table 2. The second, fine series is based on meshes
with h ≤ 0.004. Participant S2 uses h = 0.00014 and partici-
pant S1 the rest. While we can compare all mapping variants for
the coarse series, RBF data mapping with G-TPS is too expen-
sive in terms of computation and memory for the fine series.
For reproduction of our results, all data used as well as all
steps are available in a data repository56.

Figure 7 gives results for RBF data mapping with local basis
functions – C-TPS and Gaussians – for varying support radii

and for integrated and separated handling of the global polyno-
mial. Separated handling of the polynomial clearly outperforms
integrated handling in terms of accuracy and robustness. For
C-TPS, an increase in accuracy is observed for increasing
support radius. This is even true for rather large radii (r = 20h),
where we get more than quadratic convergence. Gaussians,
however, show robustness issues for larger support radii. We
assume that this behavior is caused by the increasing ratio of
large to small matrix entries. In a further test (not shown here),
we observed that increasing the (hard-coded) threshold value
from 10−9 to 10−5 seems to improve robustness.

Figure 8 sets the best local RBF variants in perspective with
RBF mapping using G-TPS, nearest-neighbor mapping, and near-
est-project mapping. RBF mapping using C-TPS with a large
support radius is comparable to RBF mapping using G-TPS.
The latter only wins for the finest meshes. RBF data mappings
clearly outperform nearest-neighbor and nearest-projection
mapping – even for a relatively small support radius of h = 3r.
Nearest-projection mapping, interestingly, does not show a
constant second-order convergence for the coarse series, which
suggests that the projection error dominates the interpolation
error. In fact, similar tests with a cubic geometry (not shown)
give constant second-order convergence for nearest-projection
mapping as, in this case, all meshes directly lie on the geometry
(i.e. no projection error). For the fine series, nearest-projection
mapping gives a rather constant second-order convergence
as well.

Figure 6. Mapping test case: Different meshes of the turbine-blade test geometry. From left to right: the geometry used to generate
the meshes, h = 0.03, h = 0.009, h = 0.004, h = 0.0005 without edges. The mesh surface color indicates the test function, edges are drawn
in black.

6preCICE measures timings for a wide range of events across MPI ranks using the precice/EventTimings framework.

Page 11 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

https://github.com/precice/precice

Next, we compare the same methods in terms of compute
time. Here, we have to distinguish between one-time prepara-
tion time (e.g., QR-factorization, matrix initialization in PETSc,
or nearest-neighbor search) and recurrent mapping time in
every mapping operation (e.g., back substitution or GMRES
solve). Figure 9 and Figure 10 give both data for various data
mapping methods and the coarse and fine series, respectively.
The quickly increasing preparation time of RBF mapping
with G-TPS makes the method unpractical for finer meshes.
For C-TPS, both the preparation time and the recurrent mapping
time increases significantly with increasing support radius
and decreasing mesh width. For fine meshes, larger sup-
port radii are thus discouraged despite their superior accuracy.
For small cases, the overhead of the PETSc solver for RBF is
more costly than the overall serial QR-factorization in G-TPS.
Nearest-neighbor and nearest-projection mapping are both

drastically cheaper than RBF data mapping, particularly in the
recurrent mapping time. Finally, Figure 11 compares the peak
memory consumption of all data mappings. RBF mapping with
G-TPS shows a drastic increase in memory with increasing
mesh size. For the coarse series, all methods show the expected
behavior: higher memory consumption for RBF than for
nearest-neighbor and nearest-projection mapping and increas-
ing memory consumption for RBF mapping using C-TPS with
increasing support radius. For the fine series, the nearest-project
surpassed even the RBF methods, due to the additional cost of
handling connectivity information.

We conclude that RBF data mapping with local basis functions
is a useful method. There is a natural trade-off between
accuracy and compute effort when modifying the support radius.
A good compromise is a support radius of r = 5h to r = 7h. In

Figure 8. Comparison of nearest-neighbor / nearest-projection mapping and RBF mapping with G-TPS and C-TPS for coarse
series (left) and fine series (right) from Table 2. RBF mapping with G-TPS is infeasibly expensive for the fine series. All RBF mapping
methods use a separated handling of the polynomial. Participant S2 uses h = 0.009 for the coarse series (left) and h = 0.0014 for the fine
series (right).

Figure 7. RBF data mapping with local basis functions for coarse series. Comparison of various support radii (left) and integrated and
separated handling of the global polynomial (right). Participant S2 uses h = 0.009. Missing data points mark diverging cases. Gaussians with
r = 7h or r = 10h diverge for some or all cases, respectively (left). With integrated handling of the polynomial, both basis functions diverge
for r = 5h and coarser meshes (right).

Page 12 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

the current implementation, C-TPS should be preferred over
Gaussians as basis functions. RBF mapping with G-TPS should
only be used for rather coarse input meshes (number of ver-
tices smaller than 1000). When RBF data mapping becomes
too expensive, nearest-projection mapping is a good alterna-
tive except for very large out-of-memory cases. Scalability
results for the mapping computation were recently published
in 21. In future work, we aim for a more in-depth analysis of
mapping variants with further geometries.

3.3 Communication
Besides coupling schemes and data mapping, the third feature
pillar of preCICE is inter-code communication. For large-scale
simulations on massively-parallel high-performance computing
systems, efficient inter-code communication is a necessity.

Employing any central instance not only deteriorates the
communication performance, but can also be memory prohibitive
when large amounts of data must be communicated. Therefore,
preCICE implements fully-parallel point-to-point communi-
cation15,17,57. In the initialization phase, preCICE performs an
analysis of the coupling mesh partitions and the defined data
mappings of each connected pair of participants to find the list
of required connections between the MPI ranks of either partici-
pant (cf. Figure 12). To this end, bounding boxes around mesh
partitions are compared in a first step, leading to preliminary
communication channels. In a second step, actual mesh data is
compared in a fully-parallel fashion21.

As communication backends, preCICE supports MPI and TCP/IP.
In general, communication via MPI is faster16. However,

Figure 10. Comparison of one-time preparation time (left) and the recurrent mapping time (right) of various data mapping
methods for the fine series. All RBF mapping methods use a separated handling of the polynomial. The one-time preparation of the
nearest-neighbor mapping is an inexpensive operation and has the tendency to fluctuate, five samples are not enough to fully smooth
them out resulting in a spike at 0.001. The recurrent mapping time of nearest-projection and nearest-neighbor mapping is below the
measurement resolution of 1ms and hence omitted. Participant S2 uses h = 0.0014.

Figure 9. Comparison of one-time preparation time (left) and the recurrent mapping time (right) of various data mapping
methods for the coarse series from Table 2. All RBF mapping methods use a separated handling of the polynomial. The recurrent
mapping time of nearest-projection and nearest-neighbor mapping is below the measurement resolution of 1ms and hence omitted.
Participant S2 uses h = 0.009.

Page 13 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

TCP/IP communication is more robust and flexible, since not
all MPI implementations support the necessary inter-code MPI
functionality57. For MPI-based communication, preCICE cre-
ates a single inter-code communicator including all involved
ranks from both participants. To establish TCP/IP-based con-
nections, on the other hand, each pair of connected ranks
exchanges a connection token via the file system. To reduce
the load on the file system, a hash-based scheme is used, which
distributes the connection files uniformly across different
directories6,16.

3.4 Getting and building preCICE
After introducing the basic coupling methods implemented in
preCICE in the last three sections, we now give an overview of
various ways to get preCICE. The GitHub repository7 is the
central platform for development, issue tracking, and contribut-
ing. It provides the release timeline with release notes, automatic
source archives, and build artifacts. However, the repository
only contains the preCICE library and native (C and Fortran)
language bindings. Additional derived software is hosted in
separate repositories under the preCICE GitHub organization:
adapter codes, tutorials, Python and MATLAB language bindings,
and more. All these components, together with the core library,
are part of the preCICE distribution8, a versioned and citable
ecosystem of components that are meant to work together
and are maintained by the preCICE developers. Everything
presented in this paper refers to the version v2104.0 of the
distribution19.

On the other hand, the preCICE library also depends on vari-
ous other libraries for a range of features. See Table 3 for an
overview of dependencies and their associated features in
preCICE.

A decision graph for getting preCICE is shown in Figure 13.
We describe the different options in the following.

Debian packages for preCICE on Ubuntu Due to the popular-
ity of Ubuntu among preCICE users, we provide corresponding
Debian packages. We aim to support the latest two Ubuntu
long term support (LTS) releases, which is frequency-wise
compatible with our strategy to not release new major versions
(breaking changes) more often than every two to three years.

Figure 11. Comparison of the maximum overall memory consumption of various data mapping methods for coarse series (left)
and fine series (right) from Table 2. Participant S2 uses h = 0.009 for the coarse series (left) and h = 0.0014 for the fine series (right). The
memory consumption is the maximum of all ranks of participant S2, which is executing the mapping.

Figure 12. Communication initialization in preCICE. Given the
distribution of vertices among the ranks of parallel participants
iS1 and j

S2 , combined with a data mapping between the vertices
shown in the middle, preCICE deduces the required communication
pattern of ranks between participants S1 and S2, depicted as the
gray connections.

7preCICE repository on GitHub: https://github.com/precice/precice

8preCICE distribution: https://precice.org/installation-distribution.html

Page 14 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

https://github.com/precice/precice
https://precice.org/installation-distribution.html

The Debian packages contained in our GitHub releases allow
one-click installation on supported platforms. This avoids
explicit dependency management by the user. The current Debian
package is always generated for the latest Ubuntu release as
well as the latest Ubuntu LTS.

Building preCICE using Spack In addition, we maintain a
Spack58 package which allows to build the complete required
software stack from source code. This is essential to be able
to test arbitrary combinations of dependency versions and

different compilers. We actively maintain a build recipe with
common configurations. Moreover, preCICE is a member of the
Extreme-scale Scientific Development Kit (xSDK)9 since
xsdk-0.5.0 (November 2019)10, which promises compatibility
to other major scientific computing packages.

Building preCICE with CMake For other platforms, we provide
an in-depth guide on how to build preCICE from source.
For cross-platform build system configuration, preCICE lev-
erages CMake. It allows users and developers to develop

Table 3. Dependencies of preCICE and associated features in preCICE.

Dependency Version CMake Option Features

Boost Geometry ≥ 1.65.1 required Spacial index trees

Boost Container ≥ 1.65.1 required Flat maps and sets

Boost Stacktrace ≥ 1.65.1 required Stacktrace information

Boost Log ≥ 1.65.1 required Configurable logging

Boost Test ≥ 1.65.1 required Base of testing framework

Eigen 3 required Mesh representation and
radial basis function mapping.

libxml 2 required Parsing of XML config files.

PETSc ≥ 3.6 PRECICE_PETScMapping Parallel RBF mapping.

Python ≥ 3.6 PRECICE_PythonActions User-defined actions

NumPy ≥ 1.18.1 PRECICE_PythonActions User-defined actions

MPI MPI-3 PRECICE_MPICommunication MPI communication back-end

Figure 13. Decision graph and overview of the different installation methods for preCICE on Linux. On macOS, users can build
using Spack, or install dependencies from Homebrew and build from source. On Windows, preCICE is available from MINGW (experimental),
while it can also work inside the Windows Subsystem for Linux. Before deciding to install preCICE on their system, users can try a virtual
machine containing all the software needed to run the preCICE tutorials.

9xSDK: http://xsdk.info/

10See https://github.com/xsdk-project/xsdk-policy-compatibility/blob/master/precice-policy-compatibility.md for more details on all policies fulfilled by preCICE.

Page 15 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

http://xsdk.info/
https://github.com/xsdk-project/xsdk-policy-compatibility/blob/master/precice-policy-compatibility.md

and build in their environment of choice. The adoption of
CMake simplifies package generation and the future support
of Windows and macOS. macOS works out-of-the-box since
preCICE v2.2. There are several ways to support Windows:
Since v1.x, there is community support via MinGW. Windows
users can also install preCICE on the WSL (Windows Sub-
system for Linux) normally. We are currently preparing native
Windows support (MSVC compiler), in addition.

preCICE demo virtual machine Before running their first cou-
pled simulation, a user needs to install not only the preCICE
library, but also a minimum set of adapters and third-party solv-
ers. This can become even more complicated if the user does
not already work on a platform compatible with all components.
To lower the entry barrier, we provide a virtual machine (VM)
image with all components needed to run the preCICE tutorials.
We create11 and distribute12 this image as a Vagrant13 Box,
which is currently available for VirtualBox, but could easily be
packaged for other providers as well. We chose Vagrant instead
of a provider-specific system, as Vagrant allows us to highly
automate the box generation, integrates with the host system
automatically (SSH access, shared folders), provides infra-
structure to distribute the box, and works with various host plat-
forms and virtualization providers. We chose a VM instead of
a container-based system, as virtual machines provide access
to a full graphical environment by default and many users in
our community already have experience working with virtual
machines, but not with containers.

3.5 Application programming interface and
configuration
Now that we know which coupling methods preCICE offers
and how to get preCICE, we show in this section how preCICE
can actually be used.

Even though preCICE is a C++ library, it also supports other
programming languages, as shown in Table 4. Alongside the
native application programming interface (API) for C++,
preCICE provides C and Fortran bindings by default. The API
for other languages is provided via independent projects, as
they follow different release cycles, different project manage-
ment, and different developer and installation procedures. Python
bindings are based on Cython, installable via pip from PyPI.
MATLAB bindings59 are based on the MEX interface and
Julia bindings are currently in the prototype phase. Finally, we
develop an independent Fortran module for easier integration
of preCICE into Fortran codes. The architecture and relation
between these projects is described in the documentation14.
All language bindings also provide so-called solverdummies as
example codes and provide pkg-config and CMakeConfig
files for integration into other projects.

To introduce the API of preCICE, we use an example: we
develop an adapter for a fluid solver written in Python to couple
it to an already adapted solid solver for fluid-structure interaction
(FSI). Mathematically, we realize a Dirichlet-Neumann cou-
pling: we use the kinematic interface condition as Dirichlet
boundary condition in the fluid solver and the dynamic interface
condition as Neumann boundary condition in the solid solver.
Thus, concerning coupling data, we receive the deforma-
tion of the solid from the solid solver as displacement values at
the coupling interface and we return forces on the coupling
interface to the solid solver. This example problem is repre-
sentative for many preCICE users: an existing (in-house) fluid
solver should be coupled to an off-the-shelf solid solver, which
is already adapted for preCICE. The simplified code of the
uncoupled fluid solver is depicted in Listing 1. u is the current
solution, for example velocity and pressure values. We use
an adaptive time step size, computed in line 3, and solve one
time step in line 4.

Table 4. Programming languages supported by preCICE. CMake options for C and
Fortran bindings are set to ON by default.

Language Location Installation

C++ precice/precice native API

C precice/precice cmake -DPRECICE_ENABLE_C=ON .

Fortran precice/precice cmake -DPRECICE_ENABLE_FORTRAN=ON .

Fortran Module precice/fortran-module make

Python precice/python-bindings pip install pyprecice@2.0.2

MATLAB precice/matlab-bindings MATLAB script

Julia precice/julia-bindings Julia package (experimental)

11preCICE VM sources: https://github.com/precice/vm

12preCICE Vagrant box: https://app.vagrantup.com/precice/precice-vm documentation: https://precice.org/installation-vm.html

13Vagrant: https://github.com/hashicorp/vagrant

14API documentation overview: https://precice.org/couple-your-code-api.html

Page 16 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

https://github.com/precice/precice
https://github.com/precice/precice
https://github.com/precice/precice
https://github.com/precice/fortran-module
https://github.com/precice/python-bindings
mailto:pyprecice@2.0.2
https://github.com/precice/matlab-bindings
https://github.com/precice/julia-bindings
https://github.com/precice/vm
https://app.vagrantup.com/precice/precice-vm
https://precice.org/installation-vm.html
https://github.com/hashicorp/vagrant
https://precice.org/couple-your-code-api.html

Creating a handle to preCICE Listing 2 shows the fully-coupled
fluid solver. The preCICE API is used at multiple locations,
which we explain in the following paragraphs. For the sake of
simplicity, we do not develop a general stand-alone adapter,

Listing 2. An adapted fluid solver written in Python. While preCICE is a C++ library, bindings for C++, C, Fortran, Python, and MATLAB
make it possible to couple a large variety of participants in a minimally invasive way.

Listing 1. Original uncoupled fluid solver in Python.

but directly use the preCICE API in the fluid code – meaning,
we develop an adapted code. In Section 4, we give an overview
of several real adapters. As the fluid code is written in Python,
we make use of the Python bindings of preCICE: preCICE is

1 u = initialize_solution()
2 while t < t_end: # main time loop
3 dt = compute_adaptive_dt()
4 u = solve_time_step(dt, u) # returns new solution
5 t = t + dt

 1 import precice
 2
 3 interface = precice.Interface("Fluid", "precice-config.xml", 0, 1)
 4
 5 mesh_id = interface.get_mesh_id("Fluid-Mesh")
 6
 7 displ_id = interface.get_data_id("Displacement", mesh_id)
 8 force_id = interface.get_data_id("Force", mesh_id)
 9
10 positions = ... #define interface mesh, 2D array with shape (n, dim)
11 vertex_ids = interface.set_mesh_vertices(mesh_id, positions)
12
13 precice_dt = interface.initialize()
14
15 u = initialize_solution()
16
17 while interface.is_coupling_ongoing(): # main time loop
18
19 if interface.is_action_required(precice.action_write_iteration_checkpoint()):
20 u_checkpoint = u
21 interface.mark_action_fulfilled(precice.action_write_iteration_checkpoint())
22
23 # returns 2D array with shape (n, dim)
24 displacements = interface.read_block_vector_data(displ_id, vertex_ids)
25
26 dt = compute_adaptive_dt()
27 dt = min(precice_dt, dt)
28 u = solve_time_step(dt, u, displacements) # returns new solution
29
30 # returns 2D array with shape (n, dim)
31 forces = compute_forces(u)
32 interface.write_block_vector_data(force_id, vertex_ids, forces)
33
34 precice_dt = interface.advance(dt)
35
36 if interface.is_action_required(precice.action_read_iteration_checkpoint()):
37 u = u_checkpoint
38 interface.mark_action_fulfilled(precice.action_read_iteration_checkpoint())
39 else: # continue to next time step
40 t = t + dt
41
42 interface.finalize()

Page 17 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

imported in line 1. In line 3, the solver interface of preCICE
is created. We pass the name of the solver and the preCICE
configuration file. The latter defines the overall coupling topol-
ogy (who is coupled to whom) and the used coupling meth-
ods (acceleration, data mapping, communication, etc.). We
come back to this file later. Moreover, for parallel coupled
codes, we need to give the current parallel rank (here 0) and
the number of ranks (here 1) to preCICE. The solver inter-
face is initialized in line 13. Here, preCICE performs several
first steps, such as setting up internal data structures and creat-
ing communication channels. In the end, the solver interface is
finalized in line 42. Internal data structures are torn down and
communication channels are closed.

Coupling meshes Coupling data and coupling meshes are
referred to by IDs, which are collected in lines five to eight. The
coupling mesh is defined before the initialization in line 11.
preCICE treats coupling meshes as (unstructured) clouds of
vertices, arranged in two-dimensional arrays of size vertices by
dimension. Certain features of preCICE (e.g., nearest-projection
data mapping) require mesh connectivity, in addition. To this
end, edges, triangles, and quads can optionally be defined, a step

which we do not show in this example. The control of the end
of the simulation is handed over to preCICE in line 17 to steer
a synchronized end of all participants. On the coupling mesh,
coupling data structures are accessed in lines 24 and 32. The
example uses specific calls for the vector-valued displace-
ment and force values. The displacement values are used as
Dirichlet boundary condition, here depicted as additional
input of solve_time_step in line 28. The force values are
computed from the current solution by means of a helper function
in line 31.

Configuration Listing 3 gives an excerpt of a preCICE
configuration for our FSI example. The dimension of the
scenario is specified in line 1 and can be either 2 or 3. Two
participants, Fluid and Solid, are configured. Fluid
uses the mesh from Solid in line 13. This way, we can define
data mappings between both meshes in lines 16 and 17. Here,
we use RBF data mappings with compact thin-plate splines
as basis functions. In line 22, we configure a TCP/IP sockets
connection between both participants. Finally, in lines 24 to 31,
a serial implicit coupling between both participants with an
IQN-ILS acceleration is defined. Fluid is the first participant,

Listing 3. Excerpt of a preCICE configuration file. Two participants Fluid and Solid are coupled.

 1 <solver-interface dimensions="3">
 2 <data:vector name="Force"/>
 3 <data:vector name="Displacement"/>
 4
 5 <mesh name="Fluid-Mesh">
 6 <use-data name="Displacement"/>
 7 <use-data name="Force"/>
 8 </mesh>
 9 <mesh name="Solid-Mesh"> ... </mesh>
10
11 <participant name="Fluid">
12 <use-mesh name="Fluid-Mesh" provide="yes"/>
13 <use-mesh name="Solid-Mesh" from="Solid"/>
14 <write-data name="Force" mesh="Fluid-Mesh"/>
15 <read-data name="Displacement" mesh="Fluid-Mesh"/>
16 <mapping:rbf-compact-tps-c2 from="Fluid-Mesh" constraint="conservative"/>
17 <mapping:rbf-compact-tps-c2 from="Solid-Mesh" constraint="consistent"/>
18 </participant>
19
20 <participant name="Solid"> ... </participant>
21
22 <m2n:sockets from="Fluid" to="Solid" />
23
24 <coupling-scheme:serial-implicit>
25 <participants first="Fluid" second="Solid"/>
26 <time-window-size value="1e-3"/>
27 <exchange data="Force" mesh="Solid-Mesh" from="Fluid"/>
28 <exchange data="Displacement" mesh="Solid-Mesh" from="Solid"/>
29 ...
30 <acceleration:IQN-ILS> ... </acceleration:IQN-ILS>
31 </coupling-scheme:serial-implicit>
32 </solver-interface>

Page 18 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

meaning that it starts each iteration. preCICE comes with a
standalone Python tool called Config Visualizer15, which helps
understanding and debugging preCICE configuration files.
The tool generates graphviz dot files60, which can be, for exam-
ple, converted to PDF. The generated PDF output is shown in
Figure 14 for the example configuration.

Coupling flow The actual coupling between participants
happens within the single preCICE API function advance, line 34
in Listing 2. This includes communication, mapping, and accel-
eration of coupling data – whatever methods are defined in
the preCICE configuration. To better understand the order and
relation of individual coupling steps, Figure 15 depicts the
overall coupling flow when using the example configuration
of Listing 3. For this visualization, we further assume that
both participants use identical time step sizes. During the ini-
tialization, Solid-Mesh is sent from Solid to Fluid. A
serial coupling scheme leads to a staggered execution of both
participants: one after the other. This implies, in particular,
that the behavior of both participants within the preCICE API
functions cannot be symmetric. In the example, Fluid is the
first participant of the coupling scheme. This means that, after
the first time step of Fluid, the first advance sends force
values to Solid, as can be seen in the figure. This coupling data
is, however, already received in initialize of Solid, such
that the solver can use it in its first time step. The first displace-
ment values are then sent at the start of the first advance of
Solid and received at the end of the first advance of Fluid.
Data is mapped in both direction within advance of Fluid.
Convergence acceleration of the coupling iteration is always
executed in advance of the second participant, here Solid.
Please note that a different preCICE configuration could
lead to a completely different order and relation of steps: the
roles of first and second could be swapped, one or both data
mappings could be computed on Solid, or the serial coupling
scheme could be replaced by a parallel one, to only name a few
choices. All these changes can be configured at runtime. The

adapted fluid code in Listing 2 remains unchanged – and would
remain unchanged even if Solid would be coupled with a third
participant.

Timestepping So far, we assumed that the coupled partici-
pants use matching time step sizes. preCICE is, however, also
able to handle non-matching time step sizes. Then, data is only
exchanged at the end of each time window, defined in the preCICE
configuration, line 26 of Listing 3. Alternatively, the time window
size can also be imposed by the first participant. If a solver uses
a smaller time step size than the time window size, it subcycles
within the time window. This means, in particular, that the same
coupling data is used throughout the time window, which can
reduce the time discretization order of the coupled codes. We are
currently working on a higher order time representation of
coupling data to sample from, a coupling procedure known as
waveform iteration40. To allow preCICE to track the time of a
solver, the current time step size needs to be passed to preCICE
in advance, cf. line 34 in Listing 2. preCICE then returns the
remaining time within the current time window, which the cou-
pled solver has to respect. Therefore, in line 27, the solver’s
time step size is restricted, if required.

Implicit coupling We still need to explain how implicit cou-
pling is realized. Please remember that by implicit coupling we
mean the repetition of time windows until sufficient convergence
of coupling data (cf. Section 3.1). To this end, a coupled solver
needs to be able to move backwards in time, which we realize
by writing and reading checkpoints of the complete internal
solver state (lines 20 and 37 in Listing 2). Writing checkpoints
is required when entering time windows for the first time and
reading checkpoints is required at the end of a time window,
whenever convergence is not achieved. As the solver does not
know anything about the coupling scheme, preCICE tells the
solver when it is time to write and read checkpoints in lines 19
and 36. At the end of the loop body, time is only increased when
convergence is achieved, in line 40. Please note that, with this

Figure 14. Auto-generated visualization of the preCICE configuration of Listing 3 using the Config Visualizer of preCICE.

15preCICE config visualizer: https://github.com/precice/config-visualizer

Page 19 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

https://github.com/precice/config-visualizer

checkpointing mechanism, nested time and coupling loops are
not necessary, but everything can be handled within one while
loop.

Help and further information We cannot explain all preCICE
API functions and all configuration options with this single
example. Please also consider the official user documentation16,
which includes complete API and configuration references.
preCICE supports adapter development by extensive san-
ity checks of correct API usage – a simple example: advance
cannot be called before initialize. Moreover, the preCICE
configuration is checked against the configuration reference and
extensive logging is configurable.

4 Official adapters
A library such as preCICE can only live as part of an applica-
tion (a solver) that calls it. To call preCICE, the solver needs to
contain code that knows how to interact with the library. We
saw in Section 3 that this additional code is short, but the user
should be able to start setting up a coupled simulation at the
level of describing a scenario, not at the level of writing code for
each of the involved solvers.

To lower the entry barrier and to make sure that the majority
of users can keep using popular solvers with the latest ver-
sions of preCICE, we have developed a set of official adapters,
which we host and maintain in their own repositories under the

Figure 15. Overall flow of coupling steps resulting from the preCICE configuration of Listing 3. The serial coupling scheme leads to
a staggered execution of both participants, one after the other. Both participants wait in initialize and advance for synchronization. We
assume identical time step sizes in both participants.

16preCICE documentation: https://precice.org/docs.html

Page 20 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

https://precice.org/docs.html

preCICE GitHub organization17. This allows each project to
follow a fitting development cycle and makes it easier for the
community to contribute and to adopt projects upstream. As
the collection of adapters grows, such community contributions
are crucial, not only in fixes and features, but also in assuming
maintainer roles.

We present here all mature official adapters to date. All the solv-
ers discussed in this section are free/open-source projects, a
fundamental property that greatly facilitates the adapter devel-
opment and distribution. For free/open-source solvers, adapters
can have the form of (i) in-place source code modifications,
(ii) calls to an additional adapter class, or (iii) runtime plugins,
wherever supported. In contrast to adapters for open-source
solvers, coupling of closed-source solvers usually entails inter-
acting through a wrapper, application programming interface
(API), or control files, architectures which potentially cancel
fundamental features of preCICE.

We begin with OpenFOAM and SU2, two solvers primarily
used for simulating fluids. We continue with CalculiX and code_
aster, two solvers primarily used for simulating solids. We then
discuss FEniCS, deal.II, and Nutils, general FEM frameworks for
which we provide various coupled examples. At the end of the
section, we list further adapters maintained by the community.

4.1 OpenFOAM
OpenFOAM18 is a finite volume toolbox and collection of solv-
ers primarily for CFD simulations61. The OpenFOAM adapter19
is currently the most frequently used of the listed adapters and
OpenFOAM represents the fluid solver in most of our tutorial
cases. It is also the adapter with the highest number of contribu-
tions in the context of student and research projects62–65. The
adapter is being actively developed and more features have been
added in the past years by multiple contributors. A separate ref-
erence publication for the OpenFOAM-preCICE adapter is
currently under review by the OpenFOAM20.

On the technical side, the adapter is an OpenFOAM func-
tion object, to which OpenFOAM can link at runtime. Function
objects are plug-ins that OpenFOAM uses mainly for optional
post-processing tools. Implementing the adapter in this way allows
using the adapter with any standard or in-house OpenFOAM
solver (each being a stand-alone application) that supports func-
tion objects, without modifying the code of the solver63. The
separation between the solver and the adapter has facilitated
development and increased user adoption, such that we now
aim for this model wherever possible. We support the latest ver-
sions of the major OpenFOAM variants, including v1706–v2106

(ESI/OpenCFD, main adapter branch) and 4.0–8 (The Open-
FOAM Foundation, version-specific branches). The adapter
can be built from source using the WMake build system
of OpenFOAM and installed into the FOAM_USER_LIBBIN
directory.

On the application side, the adapter supports conjugate heat
transfer (CHT), fluid-structure interaction (FSI), and fluid-fluid
coupling. In terms of CHT, it can read and write temperature,
heat flux, sink temperature, and heat transfer coefficient, allow-
ing not only for Dirichlet-Neumann, but also for Robin-Robin
coupling.

In terms of FSI, the adapter can read absolute and relative dis-
placements (defined on either face nodes or face centers), while it
can write forces and stresses (on face centers). At least the mesh
motion solver displacementLaplacian is known to work.
Again, a distinction between compressible and incompressible
solvers is needed.

The adapter also supports fluid-fluid coupling, reading and writ-
ing pressure, velocity, as well as their gradients. This is an area
of active research and further development.

The coupling fields, patch names, participant name, path to
the preCICE configuration file, and more are configured in
the adapter configuration file system/preciceDict, an
OpenFOAM dictionary.

In addition to that, the user needs to specify the adapter function
object in the system/controlDict. Several tutorial cases are
available, using the solvers pimpleFoam, buoyantPimpleFoam,
buoyantSimpleFoam, and laplacianFoam. There are also
several examples in which the preCICE community has used
the adapter (as-is or modified) with further standard and
in-house OpenFOAM solvers, including cases with compressible
multiphase flow66 and cases with volume coupling67–69.

The code is available on GitHub21 under the GPLv3 license,
the same license as OpenFOAM. The code contains also
comments with instructions on extending it.

The OpenFOAM community is currently developing (and has
already done so in the past) very important contributions in bring-
ing multi-physics simulations to OpenFOAM. Prominent exam-
ples include the standard CHT solver chtMultiRegionFoam22 and
the FSI solvers fsiFoam70 and solids4Foam71. These projects
solve the respective multi-physics problem monolithically,
at least software-wise: they implement both single-physics

17All preCICE repositories on GitHub: https://github.com/precice/

18OpenFOAM website (OpenCFD): https://www.openfoam.com/. Several alternative versions/forks exist.

19OpenFOAM adapter documentation: https://www.precice.org/adapter-openfoam-overview.html

20OpenFOAM Journal: https://journal.openfoam.com/

21OpenFOAM adapter on GitHub: https://github.com/precice/openfoam-adapter, GPLv3

22OpenFOAM User Guide – chtMultiRegionFoam: https://www.openfoam.com/documentation/guides/latest/doc/guide-applications-solvers-heat-transfer-chtMultiRe-
gionFoam.html.

Page 21 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

https://github.com/precice/
https://www.openfoam.com/
https://www.precice.org/adapter-openfoam-overview.html
https://journal.openfoam.com/
https://github.com/precice/openfoam-adapter
https://www.openfoam.com/documentation/guides/latest/doc/guide-applications-solvers-heat-transfer-chtMultiRegionFoam.html
https://www.openfoam.com/documentation/guides/latest/doc/guide-applications-solvers-heat-transfer-chtMultiRegionFoam.html

domains inside OpenFOAM, compiled in the same executable.
In contrast, the OpenFOAM-preCICE adapter provides addi-
tional flexibility to couple OpenFOAM with any other solver
via preCICE. Other projects also apply the partitioned approach
to extend OpenFOAM with the functionality of other codes,
including OpenFPCI (ParaFEM)72, EOF-Library (Elmer)73, and
ATHLET-OpenFOAM coupling74. OpenFOAM has previously
also been coupled with preCICE using independent (unoffi-
cial) adapters in the theses of Kevin Rave75 (CHT) and David
Schneider76 (FSI), as well as in the project FOAM-FSI of David
Blom for foam-extend23. The official OpenFOAM-preCICE
adapter differs in providing a general-purpose adapter for
preCICE for a wide range of users and use cases.

4.2 SU2
SU224 (Stanford University Unstructured) is a finite vol-
ume solver which provides compressible and incompressible
solver variants for CFD77. The SU2 adapter78 supports SU2 v6.0
“Falcon” and contributions from the community are particularly
welcome in this project25.

As SU2 is written in C++, the adapter directly uses the C++ API
of preCICE. The API calls are provided by an adapter class,
which is utilized in the SU2 solver files (e.g., in SU2_CFD.cpp).
An installation script copies the modified, version-specific files
to specific locations in the SU2 source code, which is then
built normally.

The adapter is designed for FSI applications and supports read-
ing forces and writing absolute or relative displacements. The
adapter is configured via additional options in the native con-
figuration file of SU2 and the modified solver can be executed
with or without enabling preCICE. The user can set the name
of the marker which identifies the FSI interface in the geom-
etry file of SU2 and can run simulations with multiple coupling
interfaces.

Similarly to the adapter, SU2 is also used as a solver in other
coupling projects, for example CUPyDO79, where the CUPyDO
coupler calls SU2 via a Python wrapper. In addition to exter-
nal coupling options, SU2 offers monolithic capabilities for
multi-physics simulation such as FSI and CHT80,81.

4.3 CalculiX
CalculiX26 is an open-source FEM code82. CalculiX offers a vari-
ety of solvers and the CalculiX adapter27 enables coupling some
of these solvers via preCICE. The adapter supports the dynamic

linear geometric and the dynamic nonlinear geometric solvers
of CalculiX for coupled FSI problems, as well as static thermal
and dynamic thermal solvers for CHT problems. The CalculiX
adapter20,62 is compatible with CalculiX 2.16, it is regularly
updated for new CalculiX releases, and maintains support for older
versions in version-specific branches.

The adapter directly modifies the source code of CalculiX and
produces a stand-alone executable ccx_preCICE, which can
be used both for coupled and for CalculiX-only simulations: the
flag -precice-participant <name> enables the preCICE
adapter. All preCICE-related functionality is provided in
additional source files supplied with the adapter.

The adapter is configured through a YAML file that specifies
the coupling interface names, coupling data variable types, and
type of interface (mesh nodes, or mesh nodes with connectiv-
ity). It can be used with both linear and quadratic tetrahedral
(C3D4 and C3D10) and hexahedral (C3D8 and C3D20) solid
elements, as well as S3 and S6 tetrahedral shell elements.

CalculiX is written in C and Fortran. However, all preCICE
functionality is incorporated using the C bindings of pre-
CICE. To perform coupled simulations with CalculiX in parallel
on shared-memory systems, the adapter treats CalculiX as a
serial participant, while the CalculiX linear solver is executed
in parallel. More details on how to run CalculiX in parallel is
available in the CalculiX user manual83.

4.4 code aster
code_aster28 is an FEM code in Fortran (with a Python API)
developed by EDF France, offering solvers for heat transfer,
structural analysis, and more, with one of the main applications
being nuclear power engineering. The code_aster adapter62 29 is
compatible code_aster 14.6, while it is being maintained to work
with the latest versions of preCICE.

On the technical side, the adapter is a single adapter.py
file providing methods that are used in an example
adapter.comm command file for CHT simulations. As a
Python code, the adapter depends on the preCICE Python
bindings. It can be installed by copying the adapter file into
the ASTER_ROOT/14.6/lib/aster/Execution/ directory.

On the application side, the adapter can currently read and
write sink temperature and heat transfer coefficient, thus sup-
porting Robin-Robin coupling for CHT. The preCICE tutorials

23FOAM-FSI on GitHub: https://github.com/davidsblom/FOAM-FSI

24SU2 website: https://su2code.github.io/

25SU2 adapter on GitHub: https://github.com/precice/su2-adapter, LGPLv3

26CalculiX website: http://www.calculix.de/

27CalculiX adapter on GitHub: https://github.com/precice/calculix-adapter, GPLv2

28code_aster website: https://www.code-aster.org/

29code_aster adapter documentation: https://www.precice.org/adapter-code_aster.html

Page 22 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

https://github.com/davidsblom/FOAM-FSI
https://su2code.github.io/
https://github.com/precice/su2-adapter
http://www.calculix.de/
https://github.com/precice/calculix-adapter
https://www.code-aster.org/
https://www.precice.org/adapter-code_aster.html

include such a Robin-Robin CHT case with code_aster and the
steady-state fluid solver buoyantSimpleFoam.

The code is available on GitHub30 under the GPLv2 license
and can be easily extended by adding more coupling fields in
adapter.py and providing their names as arguments to the
method adapter.writeCouplingData().

4.5 FEniCS
FEniCS is an open-source general-purpose FEM package
with a high-level Python interface84. FEniCS does not provide
ready-to-use solvers, but instead provides a broad range of tools
for solving partial differential equations with a high level of
abstraction. A wide variety of examples is provided in the FEniCS
project to illustrate its usage85. The FEniCS-preCICE adapter86
facilitates coupling of FEniCS-based solvers using preCICE.

The adapter is configured using a JavaScript object notation
(JSON) file. Afterwards, the adapter is initialized by provid-
ing a FEniCS Mesh and a SubDomain to define the coupling
boundary.

For data exchange, the adapter offers a simple function
adapter.write_data(solution). This function samples
a given solution on the previously defined coupling mesh and
writes the samples to preCICE. The function coupling_data
= adapter.read_data() returns the interface data pro-
vided by preCICE. The adapter provides two possibilities
to transform this raw coupling_data to a boundary con-
dition that can be used in FEM: (1) An Expression can be
generated and used as a functional representation of provided
coupling_data via interpolation or (2) a PointSource
can be generated to apply point-wise loads. Both approaches
have their respective use-cases for FEniCS users86, but a user can
also use the raw coupling_data to create boundary conditions
depending on the individual requirements.

The adapter supports the built-in parallelism of FEniCS and uses
its domain decomposition. If the coupling interfaces are decom-
posed over multiple ranks, the adapter implements additional
inter-process communication at the interface between
two ranks.

Many packages similar to FEniCS exist, such as firedrake87, or
the FEniCS successor FEniCS-X31. The adapter is not designed
to work with these packages, but it can serve as a template
for the development of specialized adapters.

The adapter is distributed under the LGPLv3.0 license on
PyPI32. If preCICE is installed on the system, the latest
version of the adapter can be installed via pip. With FEniCS
being a Python-based package, the adapter depends on the
preCICE Python bindings, which are automatically installed
with the adapter. The source code of the adapter is available on
GitHub33 and user documentation can be found on the preCICE
website34.

Related work to solve multi-physics problems with FEniCS
includes, for example, the monolithic fluid-structure interaction
solver turtleFSI88 written in FEniCS, as well as FENICS-HPC89.
FEniCS extensions such as multiphenics35 have also been
developed to promote prototyping of multi-physics problems.

4.6 deal.II
deal.II90,91 is a general-purpose FEM library written in C++.
Similar to FEniCS, deal.II does not include ready-to-use solvers,
but allows users to write their own application codes by pro-
viding an easy-to-use interface to complex FEM-specific data
structures and algorithms. The library provides state-of-the art
numerical techniques and their implementations leverage dis-
tributed memory computations, vectorization, threading and
matrix-free implementations, which have been proven to scale
up to whole supercomputers92,93.

While deal.II is a general-purpose library, the deal.II adapter
focuses on a subset of relevant applications and features.
Instead of trying to provide a general-purpose deal.II adapter,
we provide examples for users that want to develop their own
preCICE-enabled solvers with deal.II. These examples36 show
linear and non-linear elastic solid mechanics codes in a coupled
FSI scenario. From a user perspective, these coupled codes
are ready-to-use without detailed knowledge of deal.II itself, but
can also provide a starting point for own application-specific
adapter developments. Similarly to deal.II and preCICE, the
examples are built using CMake and a parameter file controls
solver-specific preCICE settings. Simple meshes can directly
be defined in the source code, whereas external meshes can be
loaded at runtime.

In addition to these examples, we have created a very basic
stand-alone one-way coupling example and contributed it to
the deal.II code-gallery37. In this example, a Laplace problem
is coupled to a time-dependent C++ boundary condition code.
The example is meant to serve as a first impression of how the
preCICE API looks and how to use it along with deal.II.

30code_aster adapter on GitHub: https://github.com/precice/code_aster-adapter, GPLv2

31DOLFINx (basis of FEniCS-X) on GitHub: https://github.com/FEniCS/dolfinx

32Package fenicsprecice on PyPI: https://pypi.org/project/fenicsprecice/

33FEniCS adapter on GitHub: https://github.com/precice/fenics-adapter, LGPLv3.0
34FEniCS adapter documentation: https://www.precice.org/adapter-fenics.html
35multiphenics website: https://mathlab.sissa.it/multiphenics
36deal.II adapter on GitHub: https://github.com/precice/dealii-adapter, LGPLv3
37preCICE example contributed to the deal.II code-gallery: https://dealii.org/developer/doxygen/deal.II/code_gallery_coupled_laplace_problem.html

Page 23 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

https://github.com/precice/code_aster-adapter
https://github.com/FEniCS/dolfinx
https://pypi.org/project/fenicsprecice/
https://github.com/precice/fenics-adapter
https://www.precice.org/adapter-fenics.html
https://mathlab.sissa.it/multiphenics
https://github.com/precice/dealii-adapter
https://dealii.org/developer/doxygen/deal.II/code_gallery_coupled_laplace_problem.html

As the low-level design of deal.II offers a lot of freedom of
implementation approaches, multi-physics simulations have
also been implemented in other ways94,95.

4.7 Nutils
Similar to FEniCS and deal.II, Nutils96 is also a general-purpose
FEM library. Missing capabilities for distributed computing
and the fact that Nutils is purely written in Python, includ-
ing matrix assembly, makes the library somehow less per-
formant than alternatives. The powerful and intuitive API of
Nutils, however, allows for fast prototyping. These points make
Nutils a perfect option for the cheaper, but possibly more
complex participant of a coupled simulation, or for testing new
coupling approaches. A first partitioned heat conduction exam-
ple coupling two Nutils participants was developed and validated
within only a half day of work and is available as a preCICE
tutorial (cf. Section 5). In general, coupling a new Nutils appli-
cation code is a rather simple task and can be realized best
by copying and adapting existing examples. Defining coupling
meshes and accessing coupling data is a particularly simple task
as illustrated in Listing 4. Therefore, in contrast to (for exam-
ple) FEniCS, developing a general stand-alone Nutils-preCICE
adapter is not necessary. In recent years, several examples
have been realized. The preCICE documentation gives an
up-to-date overview38.

4.8 Further adapters
The aforementioned are not the only adapters published in the
preCICE GitHub organization. The organization also includes a
few less-actively maintained projects, which mainly serve as start-
ing points for anyone who wants to build a more complete solu-
tion. If this applies to you, we would appreciate your feedback
and contributions, especially in tutorial cases and maintenance.

• �ANSYS Fluent: Intended for the fluid part in FSI and
implemented as a so-called user-defined function plug-in.
This adapter14,97 is currently experimental39.

• �COMSOL Multiphysics: Intended for the structure part
in FSI. Similarly to Fluent, this is one of the earliest
adapters and it is currently not actively maintained.

• �MBDyn: Intended for the structure part in FSI. Con-
tributed by the TU Delft Wind Energy group and
irregularly extended by the community23. The adapter
repository40 includes a tutorial case which simulates
3D cavity flow with a flexible bottom surface in which
MBDyn is coupled to OpenFOAM.

• �LS-DYNA: Intended for the structure part of CHT. Not
a ready-to-use adapter, but rather a detailed descrip-
tion on how to create an actual LS-DYNA adapter. Con-
tributed by the LKR group at the Austrian Institute of
Technology69.

• �Elmer FEM: Intended for the structure part in FSI.
Currently under development in a student project41.

Apart from these codes, you can also find a list of
community-developed projects in Section 7.

5 Illustrative examples
After installing preCICE, a user typically wants to run a
first coupled example case as close to their application and
preferred solvers as possible. Such an example needs to be sim-
ple enough to follow without significant expertise in any of
the involved solvers, but yet full-featured in terms of coupling.
With this in mind, we offer a collection of tutorial cases hosted
on precice/tutorials, with step-by-step guides in the preCICE
documentation42. Such a tutorial consists of all the required
instructions and configuration files necessary to run the coupled
simulation, as well as convenience scripts to run, visualize, and
cleanup each case. The same cases and scripts are also used
in the preCICE system tests (cf. Section 6.3) and all tutorials
follow a consistent structure and naming scheme, described in
the contributing guidelines43.

An important design decision of these tutorials is that every com-
bination of the available solvers should work and give reason-
ably similar results, demonstrating the plug-and-play concept
of preCICE. This lets the user start from a case as close to their
target as possible and then potentially replace one of the par-
ticipants with their own solver, maintaining a reference to
compare with. To achieve this goal, we had to develop features that
may otherwise seem unnatural. One of the most prominent
such features is that the adapters for OpenFOAM and CalculiX
(natively 3D solvers) can also work in a 2D mode, coupling
only lines of face points instead of surfaces. This automatic 2D
mode works either by applying additional interpolation to map
points from the mesh nodes to the face centers, or directly switch-
ing to data available at the face centers or to data on a predefined
plane.

Historically, the collection has grown with contributions from
the community. As such, the tutorials should currently be seen
as individual examples showcasing particular applications and
features, rather than as a structured cookbook. We focus here

38Nutils adapter documentation: https://precice.org/adapter-nutils.html
39Fluent adapter on GitHub: https://github.com/precice/fluent-adapter, GPLv3

40MBDyn adapter on GitHub: https://github.com/precice/mbdyn-adapter, GPLv3

41Elmer adapter on GitHub: https://github.com/HishamSaeed/elmer-adapter (under development)

42preCICE tutorials documentation: https://precice.org/tutorials.html

43preCICE contributing guidelines: https://precice.org/community-contribute-to-precice.html

Page 24 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

https://github.com/precice/tutorials
https://precice.org/adapter-nutils.html
https://github.com/precice/fluent-adapter
https://github.com/precice/mbdyn-adapter
https://github.com/HishamSaeed/elmer-adapter
https://precice.org/tutorials.html
https://precice.org/community-contribute-to-precice.html

on two representative cases that are available for a wide range
of solvers: a CHT and an FSI example. The complete collection
of tutorials is listed in Figure 16.

5.1 Flow over a heated plate CHT tutorial
This tutorial consists of a simple CHT scenario. The case con-
sists of a 2D channel flow, coupled at its bottom with a 2D
heated solid plate (cf. Figure 17). As heat is conducted across
the solid plate, the temperature of the flow region above and
downstream the plate increases, as shown in Figure 18. We dis-
cuss here the transient variant of this tutorial44. Since experi-
mental data is available by Vynnycky et al.98 the scenario serves
often as a validation case for CHT simulations99,100.

The fluid participant is the compressible OpenFOAM solver
buoyantPimpleFoam. For the solid participant, the user can
choose among the OpenFOAM solver laplacianFoam and heat
conduction solver examples based on FEniCS or Nutils. In
the case of laplacianFoam, we compute the heat flux assum-
ing a constant heat conductivity k

S
, which is additionally speci-

fied in the OpenFOAM adapter. In the case of FEniCS, the
solver was developed40 based on a heat equation example from
Langtangen et al.85. A detailed description of the solver can

be found in the FEniCS adapter reference paper86. In case of
Nutils, we provide a similar example.

All of the possible combinations ({OpenFOAM} × {Open-
FOAM, FEniCS, Nutils}) use the same preCICE configuration
file and the user can select any combination at runtime. The solid
participant solvers write heat flux values and apply a Dirichlet
boundary condition by reading temperature values at the cou-
pling interface. Accordingly, the fluid OpenFOAM participant
writes temperature values and applies a Neumann boundary
condition by reading heat flux values at the coupling interface.
By default, the tutorial is configured with a serial-implicit cou-
pling scheme in combination with Aitken under-relaxation
and nearest-neighbor mappings.

A quantity that is commonly monitored in this scenario is the
non-dimensional temperature θ = (T − T∞)/(T

h
 − T∞) along the

interface. Figure 19 depicts identical θ profiles for all solver
combinations. Furthermore, the isothermal contour plot of
the unified fluid-solid domain (cf. Figure 18) is continuous and
smooth across the coupling interface. Note that a quantitative
comparison to the original work98 is not possible, as our
cases describe flow inside a channel and not an open flow.

Listing 4. A simplified coupled Nutils code. Due to the rich and flexible API of Nutils, defining coupling meshes and accessing coupling
data are simple tasks, rendering a stand-alone Nutils-preCICE adapter unnecessary.

 1 import precice, nutils
 2
 3 domain = ... # define Nutils domain
 4 ns.u = ... # Nutils solution u in namespace ns
 5 interface = precice.Interface("FluidSolver", "precice-config.xml", 0, 1)
 6 [...]
 7 # defining a coupling mesh
 8 coupling_boundary = domain.boundary['top']
 9 coupling_sample = coupling_boundary.sample('gauss', degree=2)
10 vertices = coupling_sample.eval(ns.x)
11 vertex_ids = interface.set_mesh_vertices(meshID, vertices)
12
13 # instead of Gauss points, we can also couple at (sub-sampled) cell vertices
14 coupling_sample = couplinginterface.sample('uniform', 4) # 4 sub samples per cell
15
16 # or volume coupling
17 coupling_sample = domain.sample('gauss', degree=2)
18
19 # reading coupling data and applying as boundary condition
20 read_data = interface.read_block_scalar_data(read_data_id, vertex_ids)
21 read_function = coupling_sample.asfunction(read_data)
22 sqr = coupling_sample.integral((ns.u - read_function)**2)
23 constraints = nutils.solver.optimize(sqr, ...) # for a Dirichlet BC
24
25 # writing data
26 write_data = coupling_sample.eval('u' @ ns, ...)
27 interface.write_block_scalar_data(write_data_id, vertex_ids, write_data)

44Documentation of this CHT tutorial: https://precice.org/tutorials-flow-over-heated-plate.html

Page 25 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

https://precice.org/tutorials-flow-over-heated-plate.html

Figure 16. List of available tutorial cases.

Figure 17. Flow over a heated plate CHT tutorial: The setup is depicted at the top, geometric and physical parameters are
listed in the tables at the bottom of the figure. The fluid participant reads heat flux at the interface Γ

C
, while the solid participant

reads temperature. The boundary values for the inflow (Γinflow), outflow (Γoutflow), and the hot bottom of the plate (Γhot) are listed in the
tables at the bottom of the figure. All other boundaries are insulated. uinflow, Tinflow: velocity and temperature at the inflow boundary. p0:
ambient pressure at all boundaries of the fluid. Thot: temperature at the bottom of the plate. g: acceleration due to gravity. k

F
 and k

S
:

thermal conductivity of the fluid and solid. ρ
F
 and ρ

S
: density of the fluid and solid. c

p,F and c
p,S: specific heat capacity of the fluid and

solid. ∗
S
® = k

S
 /(ρ

S
c

p,S): thermal diffusivity of the solid. µ: dynamic viscosity. ν* = µ/ρ
F
: kinematic viscosity. Pr* = c

p,F
 µ/k

F
: Prandtl number

of the fluid. M* = ρ
F
 RTinflow/p0: Molar mass of the fluid with R being the gas constant. z is the out-of-plane thickness: even if the

coupled case is described as 2D, OpenFOAM is still a 3D solver. Quantities marked with a * are derived quantities.

Page 26 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

Figure 18. Flow over a heated plate CHT tutorial: Isothermal lines for the OpenFOAM-FEniCS combination at time t = 10s. The
lines are continuous and smooth across the interface. Similar results are observed for all other solver combinations.

Figure 19. Flow over a heated plate CHT tutorial: Comparison of non-dimensional temperature values θ at time t = 10s along a
line 0.01m above the bottom of the channel for different combinations of solvers. x ∈ [−0.5, 0] describes the region of the channel
upstream of the plate, x ∈ [0, 1] the region where the channel and the plate are coupled and x ∈ [1, 3] the downstream region.

5.2 Flow in a channel with an elastic perpendicular flap
FSI tutorial
The most common use case of preCICE is FSI. Often, one of the
first case users aim to run is the Turek-Hron FSI3 benchmark101.
However, this case needs significant computational resources
and specifications that are not trivial to achieve with every
solver out-of-the-box (e.g., parabolic inlet velocity profile in
OpenFOAM). A very common alternative is that of an elastic
flap anchored at the bottom of a 2D channel flow as depicted in
Figure 20 and further described in the preCICE documentation45.

For the fluid participant, the user can choose between:

1. �the incompressible OpenFOAM solver pimpleFoam,

2. �an incompressible CFD solver written in Nutils, or

3. �the compressible CFD solver of SU2.

For the solid participant, the user can choose among:

1. �the linear structure solver of CalculiX with linear,
rectangular finite elements,

2. �a linear structure solver provided with the deal.II
adapter, using fourth order, rectangular finite elements, or

3. �a linear structure solver example in FEniCS, using
quadratic, triangular finite elements.

All possible combinations ({OpenFOAM, Nutils, SU2} ×
{CalculiX, deal.II, FEniCS}) use the same preCICE configuration
file and the user can select any combination. The fluid solvers
read absolute displacement values at the interface (Dirichlet
boundary condition) and write forces, while all solid solvers
read forces (Neumann boundary condition) and write absolute
displacements. By default, the tutorial is configured with RBF
data mappings and a parallel-implicit coupling scheme using
IQN-ILS acceleration.

A quantity that is commonly monitored in this scenario is
the displacement of the tip of the flap. We track this quantity
using a preCICE watchpoint and compare the results across
different solver combinations in Figure 21. Figure 22 shows
a direct comparison snapshot of an FSI simulation with an
incompressible and a compressible fluid solver.

6 Testing and continuous integration
The core preCICE library and the non-core components are
developed in separate repositories, each with a number of

45Documentation of this FSI tutorial: https://precice.org/tutorials-perpendicular-flap.html

Page 27 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

https://precice.org/tutorials-perpendicular-flap.html

Figure 21. Flow in a channel with an elastic perpendicular flap FSI tutorial: Comparison of the flap tip displacement for different
combinations of solvers. The upper plot shows the results for an incompressible flow computed with Nutils or OpenFOAM. The lower
plot shows the results for compressible flow computed with SU2. Incompressible and compressible flow give qualitatively different results,
as expected. Good agreement within each class of flow simulation is achieved for all combinations of solid and fluid solvers. When using
CalculiX as solid solver, the distribution v2104.019 specified C3D8 elements, which led to insufficient agreement with the results of the rest
of the solvers. Using C3D8I elements produces results which are in better agreement, a suggestion contributed after the release of v2104.0
by Andrés Pedemonte Fehrmann (https://github.com/precice/tutorials/pull/250) and used for the results shown here.

Figure 20. Flow in a channel with an elastic perpendicular flap FSI tutorial: The setup is depicted on the left and physical
parameters are listed in the table on the right. The bottom of the flap is clamped, the solid participant reads forces at the interface,
while the fluid participant reads displacement values. The inflow velocity at the channel inlet is 10 m/s and the outflow sets a zero velocity
gradient. Ma∞, p∞, T∞, u∞: Mach number, pressure, temperature, and velocity at the inflow. ν

f
, ρ

f
: kinematic viscosity and density of the fluid. E:

Young’s modulus. ν
s
: Poisson’s ratio of the solid. ρ

s
: density of the solid. z is the out-of-plane thickness: even if the coupled case is described

as 2D, OpenFOAM and CalculiX are still 3D solvers.

Page 28 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

https://github.com/precice/tutorials/pull/250

continuous integration (CI) workflows. These workflows are
tests, quality assurance checks, or operations to prepare and vali-
date packages. We find such workflows to be indispensable for
multi-component, multi-developers projects, as they answer
questions such as ’will the code still compile and behave in the
same way if we integrate these changes?’, ’will a simulation
still give the same results?’, and ’will these changes have side-
effects in other (potentially not regularly updated) components?’.
In other words, these workflows facilitate further development
by ensuring that everything still works.

Figure 23 depicts the currently deployed workflows. As one
may observe, the granularity of testing and CI correlates to the
number of users and developers involved in each subproject. In
some cases, it may also be enabled or hindered by the respective
programming language environment. As the most important
and actively developed component, the core library is rigorously
tested in a wide range of levels. The rich tooling collection
of Python enables the continuous integration (CI) of the Python
bindings and the FEniCS adapter, while we are gradually add-
ing similar workflows to the rest of the adapters. The tutorials
provide a platform to test every component in complete simula-
tions (system tests with results regression checks). Finally, a few
additional workflows keep non-critical systems up-to-date.

The number and diversity of components required to construct
a complete coupled simulation (at least two participants + multiple

components per participant), as well as the challenges in test-
ing each component in isolation, makes testing a coupling
library significantly more complex than testing a linear alge-
bra solver library, for example. Complex testing approaches
of significant novelty are required. We structure the rest of the
section following the different complexity levels. In Section 6.1,
we present the CI of the core library, for which no interac-
tion with other components is required. In Section 6.2, we con-
tinue with the CI of non-native language bindings and adapters.
This layer depends on the core library, as well as on external
components (the solvers), leading to a need for testing in isola-
tion. In Section 6.3, we construct system tests for the complete
software stack. Finally, in Section 6.4, we give an overview
of additional checks and workflows which we use across the
whole project.

6.1 Tests for the preCICE core library
To test the complete functionality of the preCICE core library,
heterogeneous test setups are needed. Individual tests may
require one or more logical participants running on one or more
message passing interface (MPI) ranks. To solve this intrinsic
problem of testing a communication and orchestration library
in a parallel environment, the core library tests are run on four
MPI ranks. Partitioning these four ranks allows to cover various
scenarios, from testing math functions on a single rank, over
testing parallel mappings on three ranks, up to testing scenarios
with a serial participant on a single rank coupled to a parallel

Figure 22. Flow in a channel with an elastic perpendicular flap FSI tutorial: Visualization of flow field and deformed flap at time
t = 2s using OpenFOAM as fluid and FEniCS as solid solver. For comparison, the deformed solid mesh of an SU2-FEniCS simulation is
shown in black to make the difference between FSI with a compressible and an incompressible fluid simulation visible.

Page 29 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

participant on three ranks. As mature MPI-aware testing
frameworks are not available, we developed our own testing
framework extending Boost.test to support the aforementioned
criteria.

The extension of Boost.Test provides a custom
domain-specific language (DSL), which is used to set up a
PRECICE_TEST(). The DSL specifies the name of local
participants used in the test, followed by the amount of ranks
and optional requirements. If a test contains only a single partici-
pant, then its name can be omitted. The DSL is human-readable,
examples are "A"_on(2_ranks), "B"_on(1_rank) or simply
1_rank. The implementation of the DSL firstly restricts the
MPI communicator size to the required amount of total ranks,
followed by grouping ranks by name, forming communica-
tors for the logical participants. Further specified requirements
on logical participants, such as initialization of sub-components,
are then handled inside the isolated state of each participant. The
result of each PRECICE_TEST() is an immutable object which,
for each test rank, provides access to the context including name

and communicator information of the local participant. The
context holds further information about the setup, informa-
tion which allows to sanitize user input provided to utility
functions. At the end of each test, the context object firstly reverts
all changes made by setup requirements, secondly ungroups
the communicators, and finally synchronizes all ranks, includ-
ing ranks not needed by the test. See Figure 24 for example
configurations of this framework.

The core library tests can be categorized into unit tests, integra-
tion tests, and code-example tests. Currently, preCICE is tested
with a total of 438 unit and integration tests.

Unit tests This type tests a component in isolation, using its
public interface. The test functions manually set up the major-
ity of required components and partition the available ranks
according to the needs of the test. The needs for partitioning
vary: First, many unit tests handling geometric functions, VTK
exports, and mesh internals require only a single logical
participant and run on a single rank. Furthermore, components

Figure 23. Overview of the testing and continuous integration workflows for different preCICE components. Each box represents
a separate project repository. The non-native language bindings depend on preCICE. The adapters depend on language bindings or directly
on preCICE. The tutorials and system tests depend on all the adapters. The components at the bottom-most row (virtual machine image,
CI images, Doxygen documentation, website) depend on one or more other components. Read more details about each workflow in the
section number listed above it.

Page 30 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

such as VTK exports and radial-basis-function mappings have
additional functionality when running in parallel, hence require
multiple ranks on a single logical unit. Finally, inter-code
communication, the coupling schemes, and the mesh partition-
ing require multiple logical participants. Each of these logical
participants may run on one or multiple ranks. See Listing 5 for
an example of a unit test.

Integration tests This type uses the application programming
interface (API) of preCICE itself to test specific scenarios, hence
the test setup is handled using a preCICE configuration file.
Individual logical participants may run on a single rank each,
to test coupling of serial solvers with various setups. Another
very common setup consists of two logical participants running
on two ranks each. This allows to thoroughly test the parti-
tioning behavior given various mapping schemes. Integration
tests are also used to reproduce and fix bugs reported by users.
See Listing 6 for an example of an integration test.

Code-example tests This type smoke-tests native bindings
using the provided examples. Native-bindings are C and Fortran
bindings, which are implemented using the C++ API of
preCICE and linked directly into the library. Non-native bindings
such as Python are covered in Section 6.2. Each language bind-
ing comes with an example program called a solverdummy.
All solverdummies implement the same functionality and
provide a template for using the preCICE API in the respective
programming language. The code-example tests themselves
consist of three steps: First, the tests build each solverdummy
and link it to the preCICE library. This tests a common subset
of the interface of the bindings for completeness and assures
that the build system is functional. Second, they run a small
coupled simulation coupling each solverdummy to itself. This
ensures that the used language binding is working correctly.
Finally, they run a small coupled simulation coupling different

solverdummies to each other. This ensures that the bindings (of
different languages) are compatible.

6.2 Tests for adapters and bindings
As explained in Section 3.4 and Section 4, language bindings
and adapters are organized in independent repositories. The
requirements for tests of such non-core components are identical
to the ones for the core library: the non-core components must
also comprise of valid code, their individual units should
behave in the correct way and work together, while continu-
ous integration tests should be performed on every commit to
each component repository. We again distinguish unit tests and
integration tests.

Unit tests We do not need a special treatment for unit tests of
non-core components. Note that non-core components are writ-
ten in various languages. This requires the use of suitable testing
frameworks for each language, such as the Python module
unittest for the Python bindings and the FEniCS adapter.

Integration tests Non-core components use preCICE through
its API, treating it as a regular, black-box dependency. This
safeguards low software coupling, but also leads to a technical
complication as already mentioned above: Due to the very
nature of coupled simulations, preCICE requires at least two
participants for executing most steps of a simulation. This
cannot be avoided easily (since the components are not able
to modify preCICE itself) and, therefore, it is not trivial to test
each component independently.

To solve this problem we use a strategy commonly known as
mocking. This is a well-known and widely established software
engineering practice102, but not as widespread in the scientific
software community. Mocking is useful, if the system under test
(non-core component) has another component (preCICE) as

Figure 24. This figure depicts the MPI communicator setup on the left corresponding to a sequence of test setups on the right.
The testing framework uses four MPI ranks, depicted by the vertical lines. Horizontal black bars are barriers and dotted lines are ranks which
are unused during a test setup and hence idle. Each test starts with PRECICE_TEST(...), containing an expression based on the DSL, which
results in a complete test setup. The test DSL specifies the name of local participants followed by the amount of ranks. The name is optional
for tests containing only a single participant.

Page 31 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

Listing 6. Example integration test involving two parallel participants SolverOne and SolverTwo running on two ranks each.
The context object provides information about the identity of the current rank. This information is used to setup further local information
such as mesh and data names. Integration tests then directly construct a SolverInterface and use preCICE API calls to run the test.

Listing 5. Example unit test of a parallel RBF mapping running on four ranks. Further requirements on the test are the setup of
the master-slave communication and the initialization of PETSc. First the test defines meshes and associated data followed by setting up
and executing the mapping. The result is then checked against the expected outcome. The example showcases the preparation involved in
testing individual components of preCICE in a parallel context.

 1 BOOST_AUTO_TEST_CASE(ParallelMappingTest)
 2 {
 3 PRECICE_TEST(""_on(4_ranks).setupMasterSlaves(), Require::PETSc);
 4 constexpr int dims = 2;
 5 // Setup InMesh
 6 mesh::PtrMesh inMesh(new mesh::Mesh("InMesh", dims));
 7 mesh::PtrData inData = inMesh->createData("InData", dims);
 8 getDistributedInMesh(context, inMesh, inData);
 9 // Setup OutMesh ...
10 // Setup Mapping
11 PetRadialBasisFctMapping<Gaussian> mapping{
12 Mapping::CONSISTENT, dims, Gaussian{5.0}};
13 mapping.setMeshes(inMesh, outMesh);
14 // Test the Mapping preparation
15 BOOST_TEST(not mapping.hasComputedMapping());
16 mapping.computeMapping();
17 BOOST_TEST(mapping.hasComputedMapping());
18 // Test the Data Mapping
19 BOOST_TEST(not mapping.hasComputedMapping());
20 mapping.map(inData->getID(), outData->getID());
21 BOOST_TEST(outData->values() == expectedData);
22 }

 1 BOOST_AUTO_TEST_CASE(ParallelIntegrationTest2x2)
 2 {
 3 PRECICE_TEST("SolverOne"_on(2_ranks), "SolverTwo"_on(2_ranks));
 4 std::string meshName, writeDataName, readDataName;
 5 if (context.isNamed("SolverOne")) {
 6 meshName = "MeshOne";
 7 writeDataName = "Data1";
 8 readDataName = "Data2";
 9 } else {
10 // ...
11 }
12 SolverInterface interface(context.name, _pathToTests + "test-config.xml",
13 context.rank, context.size);
14 // set mesh vertices and initialize
15 std::array<double, 4> inValues, outValues;
16 while (interface.isCouplingOngoing()) {
17 interface.readBlockScalarData(readDataID, 4, vertexIDs, inValues);
18 if (context.isNamed("SolverOne")) {
19 outValues = inValues;
20 } else {
21 outValues = solveSystem(inValues);
22 }
23 interface.writeBlockScalarData(writeDataID, 4, vertexIDs, outValues);
24 interface.advance(1.0);
25 }
26 BOOST_TEST(outValues == expectedValues);
27 }

Page 32 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

a dependency and interacts with this component through its
API. Since we want to avoid starting a second participant in
our integration tests, we use a mocked version of preCICE
instead of the original one. This mocked preCICE returns
fake output for testing and does not rely on any other
components. In the following, we give two examples for our
implementation of this testing pattern: first, integration tests in
the FEniCS adapter and, second, integration tests in the Python
language bindings of preCICE. In both cases, API calls to the
fake version of preCICE do not require any initialization of a
second participant and hard-coded fake values are returned. This
allows to write short and simple tests.

Mock testing for the FEniCS adapter heavily relies on the
Python module unittest.mock, which allows creating a
MagicMock object that is used to provide a fake implementa-
tion of functions or objects. Additionally, the module provides
a patch function that allows to replace a module that a test
imports with a fake version of the same module, at runtime.
These two pieces allow us to replace the Python bindings of
preCICE with a fake version. For a detailed example, please
refer to the adapter reference paper86.

Mock testing for the Python bindings is more involved, since
the bindings rely on two different languages, C++ and Python,
and (to the authors’ knowledge) no mocking framework exists
for this purpose. We, thus, test the Python bindings by build-
ing a specific executable, where we link against the mocked
version of preCICE: a single SolverInterface.cpp with a
fake implementation. We do include the original interface of
preCICE (SolverInterface.hpp) to make sure that the
API is consistent. This allows us to keep the application code
of the Python bindings clean and to decide whether we want to
use the real or fake implementation of the preCICE library at
compile time. The integration tests of the Python bindings
then allow us to check for the correctness of type conver-
sions done by the language bindings, such as converting a C++
double* array to a numpy array103 using Cython104. An exam-
ple is given in Listing 7. Our mocking approach leads to a
non-standard setup.py build script, which allows us to
choose whether we want to build the real executable or the
one intended for testing through the standard interface of

setuptools46. A nice side effect of this testing pattern is that
preCICE itself is not even needed and does not have to be
installed on the system running the tests.

Outlook Testing of other language bindings and adapters is
under current development: Our prototype for integration tests
for the OpenFOAM adapter uses the mock testing pattern
and the C++ mocking framework FakeIt47. For testing the
MATLAB bindings, the existing Python bindings testing
approach may be used.

6.3 System and regression tests
Fine-grained unit and integration tests can give us detailed
insight into each component, but these tests only study each
component or group of components in isolation. System tests
give us the user perspective of all components working together:
‘does the coupled simulation black-box still behave in the
same way?’ and ‘if not, which change in which component
introduced the regression?’. While system tests can be quite
straight-forward in their implementation, developing effective
system tests for multi-component, multi-participant simula-
tions becomes a complex task, especially when considering
different stakeholder perspectives.

Let us look at a few examples of such stakeholder perspectives.
As a release manager, Maria wants to know that the latest state
of all development branches to be released works flawlessly
together on the release day, so that she can release a new version.
As a developer of the core library, Lisa wants to know that her
proposed changes do not cause any unintended regression in
results or behavior in the context of a complete simulation.
As a developer of an adapter, Adam has even more questions.
First, similarly to Lisa, he wants to know that his proposed
changes do not cause any regressions downstream. Additionally,
Adam wants to know if he needs to update his adapter to
support breaking changes (of installation/configuration) in the
development branches of upstream components or new solver
and dependency versions. As a developer of tutorial cases, Tudor
wants to know that configuration updates do not cause regres-
sions and that the tutorials still work as expected with newer
solver and dependency versions. Finally, as a maintainer of the
system tests, Sy wants to know that their proposed changes do not
cause any downtime to the operations.

Listing 7. Fake implementation of setMeshVertices used for integration tests of Python bindings. The fake version of
setMeshVertices just returns fake vertex IDs. If an integration test of the Python bindings is calling this function, one can easily check
whether the obtained vertex IDs are the expected ones using Python’s unit testing framework.

void setMeshVertices(int meshID, int size, const double *positions, int * ids){
 std::vector<int> fake_ids = get_hardcoded_ids(size);
 std::copy(fake_ids.begin(), fake_ids.end(), ids);
}

46python3 setup.py install or python3 setup.py test

47FakeIt: https://github.com/eranpeer/FakeIt

Page 33 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

https://github.com/eranpeer/FakeIt

The situation we just described becomes apparent looking at
Figure 25. The test matrix evolves into a cross product of:

{platform} {preCICE branches} {bindings b.} {adapter b.}

{tutorial b.} {system tests b.}

× × ×
× ×

As these tests take a long time to prepare and execute and as
they are particularly challenging to log in a structured and
effective way, executing the complete test matrix is not realistic
and we need to select representative configurations.

We restrict the test matrix to a set of strategically important
combinations. In terms of platforms, we execute most tests on
the platform most common among users, currently the latest
Ubuntu LTS version 20.0448. We also execute selected tests on
the oldest supported platform (previous Ubuntu LTS) and on
the latest state of the continuously-updated Arch Linux49. In
terms of branches, we test each proposed branch with the
rest of the components in their latest released state: this helps
Lisa, Adam, and Tudor develop their projects independently,
without worrying about untested new features. In case a break-
ing change is introduced in one component, then this needs
to be tested in combination with corresponding compatibility

updates in the downstream components. We also test the devel-
opment branches of all components together in nightly builds,
so that Maria and every developer can confidently release new
versions of each component.

Maintaining the system tests and reference data up-to-date
requires significant effort and any failing tests need to be
addressed quickly, so that they remain useful and trusted. We
observed that deep understanding and documentation of known
issues that trigger test failures is crucial for the infrastructure
to facilitate instead of hinder the development. Similarly, eas-
ily accessible logging of different levels is very important to
verify that all relevant tests have succeeded and to precisely
identify any faults. Finally, even though the operations need
to be automatic enough to get green lights at the right places,
developers do want to be able to form a clear mental model
of the system behind the automation in order to trust the system
and try to debug it, if needed.

Since preCICE v1 and till v2.1, we maintained the system tests
on a dedicated repository50 using Travis CI. This repository
contained scripts to run tests, scripts to prepare the test cases,
as well as reference data for each test case. Because of policy

Figure 25. Example questions that the system (regression) tests of preCICE help us answer (planned workflow). The system
tests are always executed at the bottom-most layer (tutorials repository), using Docker images prepared in the layers above. Every night, all
develop branches are tested together, to ensure that a new version of preCICE can be released at any time (blue). Pull requests that introduce
non-breaking changes are automatically tested against the latest released versions of the other repositories (orange). Pull requests that
introduce breaking changes need additional coordination with downstream projects and the tests need to compose compatible branches
(green). The Python bindings and the FEniCS adapter only serve here as examples; in practice, more repositories are involved.

48Ubuntu 20.04 LTS: https://wiki.ubuntu.com/FocalFossa

49Arch Linux: https://archlinux.org/

50preCICE system tests on GitHub: https://github.com/precice/systemtests

Page 34 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

https://wiki.ubuntu.com/FocalFossa
https://archlinux.org/
https://github.com/precice/systemtests

changes in Travis CI and increasing flexibility offered by newer
alternatives, we phased-out this implementation and we have
been migrating to a different system. We describe here the out-
dated architecture of the tests used for preCICE v2.1 and discuss
issues and potential solutions.

With every new commit pushed to an adapter repository, the Travis
CI instance of the adapter instructed the Travis CI instance of
the systemtests repository to run any tests (tutorials) it knew
to involve this adapter. Travis CI then built Docker images of
preCICE adapters and pushed these to Docker Hub so that
they could be reused. It then started one Docker container per
simulation participant, as well as one Docker container serving
the tutorial configuration. We used Docker Compose to build
connections between the containers and we set a commonly
accessible directory to exchange necessary connection tokens
for the inter-code communication, as described in Section 3.3.

At the end of each test case, a script compared the results.
We originally compared every available results file excluding
lines unique to every run. To account for sporadic rounding
errors, we filtered arithmetic data and applied a numerical com-
parison. As this approach was very tedious to maintain for every
new solver, we switched to comparing only the exported VTK
files of the preCICE interface meshes. With a common file for-
mat at hand, the comparison scripts became much easier to
execute and maintain. We also found this simplification to be
enough for identifying regressions in the coupling, which is our
main interest. After Travis CI compared the results, it archived
key log files to a dedicated repository precice_st_output.
This was a far-from-ideal logging solution, leading to cumber-
some workflows to discover more details about the executed
tests and potential failures.

We are currently redesigning our system tests. Key decisions
so far have been to separate the machinery from the reference
data, hosting the (reduced) reference data together with the con-
figurations that produce them (tutorials), so that they can be
updated at the same time. More recent tools, such as GitHub
Actions51 and GitLab CI52, offer multi-project pipelines and
more possibilities for storing artifacts and archiving logs. With

such additional options to avoid complex workarounds and with
our experience from the aforementioned approaches, a redesign-
ing was deemed reasonable and is expected to fruit in the near
future. Until then, we rely on regular manual runs with every
release.

6.4 Additional checks
To maintain the quality and consistency of the codebase, the
preCICE CI runs additional checks on the latest state of every
pull request. The CI uses a fixed version of clang-format53 to
check all C++ and C files, as well as a custom formatter based
on the Python lxml54 package to check all XML configuration
files for correct formatting. As most CI environments provide
multiple CPUs, the system uses GNU parallel105 to leverage the
available compute resources.

When building and testing on Ubuntu, the CI additionally gener-
ates the Debian packages using CPack55 and test them using the
Debian package checker Lintian56. Furthermore, the tests gener-
ate code testing coverage information using the --coverage option
of the GNU C++ compiler. The resulting coverage informa-
tion is then gathered by LCOV57 and uploaded to the Codecov58
service, which integrates the coverage report into the GitHub
user interface. This informs the reviewer about the coverage of
the code change, as well as the resulting coverage change of the
whole project.

Moreover, the external code quality services lgtm59, CodeFactor60,
and Codacy61 are integrated into the core library’s GitHub project
and automatically run to perform code analyses using web-
hooks. A scheduled job runs the proprietary static code analysis
tool Coverity Scan62 on the codebase once per week and reports
the results to the developer mailing list. These tools are useful
to find less obvious issues such as code complexity, code dupli-
cation, misspellings as well as technical issues such as unreach-
able code, code paths leading to using uninitialized variables,
incorrect exception handling, and more.

We use publicly available GitHub Actions from the
marketplace63 to apply such checks on less critical components:
we validate shell scripts using shellcheck64, we validate and

51GitHub Actions: https://github.com/features/actions

52GitLab CI/CD: https://docs.gitlab.com/ee/ci/

53clang-format: https://clang.llvm.org/docs/ClangFormat.html

54lxml: https://lxml.de/

55CPack: https://cmake.org/cmake/help/latest/module/CPack.html

56Lintial: https://wiki.debian.org/Lintian

57LCOV: http://ltp.sourceforge.net/coverage/lcov.php

58Codecov: https://about.codecov.io/

59lgtm: https://lgtm.com/

60CodeFactor: https://www.codefactor.io/

61Codacy: https://www.codacy.com/

62Coverity Scan: https://scan.coverity.com/

63GitHub Actions Marketplace: https://github.com/marketplace?type=actions

64shellcheck: https://github.com/koalaman/shellcheck, via GitHub Action ludeeus/action-shellcheck

Page 35 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

https://github.com/features/actions
https://docs.gitlab.com/ee/ci/
https://clang.llvm.org/docs/ClangFormat.html
https://lxml.de/
https://cmake.org/cmake/help/latest/module/CPack.html
https://wiki.debian.org/Lintian
http://ltp.sourceforge.net/coverage/lcov.php
https://about.codecov.io/
https://lgtm.com/
https://www.codefactor.io/
https://www.codacy.com/
https://scan.coverity.com/
https://github.com/marketplace?type=actions
https://github.com/koalaman/shellcheck

format Python scripts using autopep865, we validate the syntax
of our documentation files with markdownlint66, and we check
for broken hyperlinks using markdown- link-check67. Finally,
we publish Python packages using twine68.

Code reviews provide an additional safety check, which can
prevent issues that are otherwise difficult to check automati-
cally. Pull request templates provide checklists for authors and
reviewers. Most non-trivial code contributions to preCICE since
2018 are reviewed by at least one further core developer. The
master branches are protected from pushing and from merging
without reviews.

Apart from tests and quality checks, a few more operations
contribute to maintaining the resources available to the user
up-to-date. A GitHub Actions workflow builds and packages a
Vagrant69 box for VirtualBox with the latest Ubuntu LTS and all
common components and tutorials pre-installed. A similar work-
flow prepares and publishes Docker images with all the preCICE
dependencies, images which we use for our CI70. The website of
preCICE is also automatically generated using GitHub Pages71,
integrating content from additional repositories (tutorials and
adapters). Finally, a dedicated workflow periodically updates the
Doxygen-based C++ source documentation.

7 Community
As the purpose of preCICE is to connect different simulation
software, preCICE naturally also helps connecting research-
ers – imagine the fluid mechanics group and the solid mechanics
group of a computational mechanics faculty with their individual
in-house CFD and FEM codes. In the past five years, a sig-
nificant community of users has been formed around preCICE,
with some of them also contributing back code or tutorials. The
preDOM project72, funded by the German Research Founda-
tion, played an important role for this development. In fact,
most of the improvements described in this paper were part of
the project: building and packaging, adapters, tutorials, tests,
and continuous integration, but also user documentation and
community building.

Today, we know through forum discussions, conferences, work-
shops, and publications of more than 100 research groups using

preCICE. Roughly one half of them are from academia, while
the other half comes from non-academic research centers
(e.g., the German Max Planck Institute for Plasma Physics,
the German Helmholtz-Zentrum Hereon, the Italian Aerospace
Research Centre, or A*STAR in Singapore) or industry (e.g.,
MTU Aero Engines or Bitron). We collect some user stories on
our website73 and depict some highlights in Figure 26. Presumably
half of the users apply preCICE for fluid-structure interaction
or conjugate heat transfer applications. The other half uses
preCICE for more uncommon setups, for example, cou-
pling of different fluid models with each other106 or coupling
of CFD to particle methods11.

Applications and Software A non-exhaustive list of application
fields includes mechanical and civil engineering (astronautics59,
manufacturing processes66,69, aerodynamics23,64.107–111, urban
wind modeling106, aeroacoustics6,112, explosions113,114), marine
engineering22, bio engineering (heart valves115, aortic blood
flow7, fish locomotion116, muscle-tendon systems10), nuclear
fission and fusion reactors9,117,118, and geophysics8,12,119. Many
users do not only use the official adapters (cf. Section 4), but
couple further community codes or their in-house codes. A
non-exhaustive list of available coupled software (under a
commercial or an open-source license) includes CAMRAD II
and TAU110, DUST23, DuMuX8,120, DUNE121, Rhoxyz22, Ateles122,
XDEM11, and FLEXI123.

Community Building preCICE users can interact with develop-
ers and with each other through various channels. We provide
and moderate a Discourse forum74 and a Gitter chat room75.
The forum replaced a previously used mailing list as discus-
sions in the forum can be much better structured through
categories, labels, and solution posts. Moreover, Discourse can
be customized to great extent, which allows us to hand over
moderation responsibilities to the community at a suitable pace.
For feature requests and bug reports, we use the issue track-
ers of the different repositories on GitHub76. Moreover, we
organize yearly mini-symposia at ECCOMAS conferences
(ECCM-ECFD 2018, COUPLED 2019, WCCM 2020, COUPLED
2021) and our own preCICE Workshops (preCICE Workshop
2020 in Munich77, preCICE Workshop 2021 and 2022 online).
The workshops include an introduction course, which we plan

65autopep8: https://github.com/hhatto/autopep8, via peter-evans/autopep8

66markdown-lint: https://github.com/DavidAnson/markdownlint, via articulate/actions-markdownlint

67markdown-link-check: https://github.com/tcort/markdown-link-check, via gaurav-nelson/github-action-markdown-link-check

68twine: https://github.com/pypa/twine

69Vagrant: https://www.vagrantup.com/, see also Section 3.4.

70preCICE CI images: https://github.com/precice/ci-images, Docker: https://hub.docker.com/u/precice

71preCICE Website sources: https://github.com/precice/precice.github.io

72More about preDOM on our blog: https://precice.discourse.group/t/how-did-precice-get-popular/321

73preCICE community stories: https://precice.org/community-projects.html

74preCICE forum on Discourse: https://precice.discourse.group/

75preCICE chat room on Gitter: https://gitter.im/precice/Lobby

76preCICE GitHub organization: https://github.com/precice

77Aftermath of the 2020 workshop: https://precice.discourse.group/t/precice-workshop-2020-updates/40

Page 36 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

https://github.com/hhatto/autopep8
https://github.com/DavidAnson/markdownlint
https://github.com/tcort/markdown-link-check
https://github.com/pypa/twine
https://www.vagrantup.com/
https://github.com/precice/ci-images
https://hub.docker.com/u/precice
https://github.com/precice/precice.github.io
https://precice.discourse.group/t/how-did-precice-get-popular/321
https://precice.org/community-projects.html
https://precice.discourse.group/
https://gitter.im/precice/Lobby
https://github.com/precice
https://precice.discourse.group/t/precice-workshop-2020-updates/40

to further extend in the next years. Figure 27 shows a static
growth of the preCICE community over the previous three
to four years.

Contributions To strengthen the sustainability of preCICE,
we encourage users to also contribute back. Example con-
tributions encompass code, tutorials, bug reports, or docu-
mentation. On our website, we provide detailed contributing

guidelines78 while every external contribution is reviewed for
functionality, coding practices, consistency, and usability. Our
long-term goal is to hand over development of the official
adapters (cf. Section 4) to the community. In recent years, the
OpenFOAM adapter has, in particular, seen various external
contributions125 and serves as an example of how the community
may successfully contribute to isolated, smaller compartments
of a software project, as they can be easier to understand and

Figure 26. Various simulations from the preCICE community. All pictures taken from the page Community stories on precice.org. Top
left: a shallow-water equations solver coupled to OpenFOAM124. Top right: an artificial heart valve simulated with OpenFOAM and CalculiX115.
Bottom left: A 3D poro-mechanics model coupled to 2D fluid equations, both implemented in FEniCS119. Bottom right: a MATLAB heat
equation solver coupled to a GPU ray-tracing software package to simulate heat conduction and radiation on the surface of the moon59.

78Contributing guidelines: https://precice.org/community-contribute-to-precice.html

Page 37 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

https://precice.org/community-contribute-to-precice.html

contribute to. As of July 2021, 20% (18 out of 89) pull requests
and 26% (26 out of 100) issues in the OpenFOAM adapter
repository have been contributed by external contributors (not
from the academic groups of the core team). While half of
the external pull requests were ultimately not merged, they
still serve as proof of concept for features that were at the
time not aligned with the direction of the project. We have
observed that several non-merged contributions were still useful
for the community and we expect that tooling, automation, and
clear guidelines will increase the ratio of successful external
contributions in the long run.

8 Conclusions
We have shown on the basis of various aspects that there is a
tremendous gap between a working prototype software – a software
with state-of-the-art numerical and HPC methods (preCICE in
2016) and a sustainable and user-friendly software (preCICE
in 2021). While the first one allows for scientific discoveries in
scientific computing, only the latter allows for scientific dis-
coveries in application areas as well. This can also be observed
in the user numbers of preCICE. While the software today
has a large and vivid community of users in a wide variety of
application areas, it hardly had any users in 2016. To bridge this
gap, we presented necessary efforts in documentation, building,
packaging, integration with external software, tutorials, tests,
continuous integration, and community building. Nearly all of
these aspects are more complicated for a multi-component
coupling software such as preCICE than for most other scien-
tific computing software. This is not only due to the fact that
preCICE is a library and, thus, needs another program that calls

preCICE, but also that a coupled simulation needs by definition
at least two different programs to be coupled. Therefore, often
novel solutions are necessary for usually standard problems,
such as the variety of testing concepts introduced in
Section 6.

In forthcoming years, preCICE will undergo various extensions
to make the software applicable beyond low-order, mesh-based,
surface-coupled problems, such as fluid-structure interaction.
Current work focuses on geometric multi-scale coupling (espe-
cially 1D-3D and 2D-3D mapping), dynamic coupling meshes,
waveform iteration40, mesh-particle coupling, macro-micro
coupling, and coupling to data-based approaches. An impor-
tant topic will also be the efficient support of volume-coupled
problems, which requires novel ideas in all main ingredients of
preCICE: communication, coupling schemes, and data map-
ping. To further increase the sustainability of preCICE, we
will build on and extend the system test concept introduced in
Section 6.3.

Data availability
Underlying data
Archived data at the time of publication is Test Setup of
Turbine Blade Mapping Data56. It consists of test setup and data
to reproduce results in Section 3.2. This archive contains the
following underlying data:

• �Files array.sbatch and test.sbatch are job scripts used to
execute the simulations on computing cluster systems.

Figure 27. Various traffic data showing community growth over time connected to key events. Whereas new releases have a clear
impact on GitHub traffic, conferences, such as the ECCOMAS mini-symposia (MS1, MS2, MS3), different OpenFOAM workshops (ESI, OFW),
and the preCICE workshops (WS) have not always a clear direct impact. With the start of the preCICE forum (fall 2019) and, in particular, with
moving the user documentation to the new website at the end of 2020, traffic is shifted away from GitHub. At the online preCICE Workshop
2021, we used the forum to let attendees introduce themselves. This led to sustainable increase of forum traffic.

Page 38 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

• �Folder meshes contains the mesh files which have coor-
dinate and connectivity information of the geometries
used in the simulations.

• �Folder results contains CSV files having the results
from which the plots in Section 3.2 are generated.

• �File README.md contains steps to run the simulations
and generate the results

Data are available under the terms of the Creative Commons
Attribution 4.0 International (CC BY 4.0)

Software availability
Software and source code available from: https://github.com/pre-
cice Archived source code at time of publication is preCICE
Distribution Version v2104.019. Software in this project contain
the following items and licenses:

• �preCICE: LGPL-3.0 License

• �Python bindings: LGPL-3.0 License

• �Fortran module: LGPL-3.0 License

• �Matlab bindings: LGPL-3.0 License

• �OpenFOAM adapter: GPL-3.0 License

• �deal.II adapter: LGPL-3.0 License

• �FEniCS adapter: LGPL-3.0 License

• �CalculiX adapter: GPL-3.0 License

• �SU2 adapter: LGPL-3.0 License

• �code_aster adapter: GPL-2.0 License

• �Tutorials: LGPL-3.0 License

• �vm: MIT License

• �precice.github.io: CC BY 4.0 License

Acknowledgements
We acknowledge the support by the Stuttgart Center for
Simulation Science (SimTech). Moreover, we thank the Leibniz
Supercomputing Centre of the Bavarian Academy of Sciences
and Humanities for compute time on SuperMUC-NG.

Besides the authors of this paper, many more contributed to
preCICE in the last five years. We want to thank Francisco
Espinosa, Carme Homs Pons, Yakup Hoshaber, Qunsheng
Huang, Alexander Jaust, Gilberto Lem Carrillo, Christopher
Lorenz, David Sommer, Michel Takken, Alexander Trujillo, and
everybody else who contributed to any repository of the
preCICE organization on GitHub.

References

1.	 Slotnick J, Khodadoust A, Alonso J, et al.: CFD vision 2030 study: A path
to revolutionary computational aerosciences. Tech. rep., NASA Langley
Research Center. 2014.
Reference Source

2.	 Hellerstein JL, Gu S, Choi K, et al.: Recent advances in biomedical simulations:
a manifesto for model engineering [version 1; peer review: 3 approved].
F1000Res. 2019; 8(261): F1000 Faculty Rev-261.
PubMed Abstract |� Publisher Full Text | Free Full Text

3.	 Schär C, Fuhrer O, Arteaga A, et al.: Kilometer-scale climate models:
Prospects and challenges. B Am Meteorol Soc. 2020; 101(5): E567–E587.
Publisher Full Text

4.	 Keyes DE, McInnes LC, Woodward C, et al.: Multiphysics simulations:
Challenges and opportunities. Int J High Perform C. 2013; 27(1): 4–83.
Publisher Full Text

5.	 Anzt H, Bach F, Druskat S, et al.: An environment for sustainable research
software in Germany and beyond: current state, open challenges, and
call for action [version 2; peer review: 2 approved]. F1000Res. 2020; 9: 295.
PubMed Abstract | Publisher Full Text | Free Full Text

6.	 Lindner F, Totounferoush A, Mehl M, et al.: ExaFSA: Parallel fluid-structure-
acoustic simulation. In: H.-J. Bungartz, S. Reiz, B. Uekermann, P. Neumann, W.
E. Nagel (Eds.), Software for Exascale Computing. of LNCSE, Springer, 2020; 136:
271–300.
Publisher Full Text

7.	 Naseri A, Totounferoush A, González I, et al.: A scalable framework for the
partitioned solution of fluid–structure interaction problems. Comput Mech.
2020; 66: 471–489.
Publisher Full Text

8.	 Jaust A, Weishaupt K, Mehl M, et al.: Partitioned coupling schemes for free-
flow and porous-media applications with sharp interfaces. In: R. Klöfkorn,
E. Keilegavlen, F. A. Radu, J. Fuhrmann (Eds.), Finite Volumes for Complex
Applications IX Methods, Theoretical Aspects, Examples. Springer International
Publishing, Cham, 2020; 605–613.
Publisher Full Text

9.	 Fan W, Li H, Anglart H: A study of rewetting and conjugate heat transfer

influence on dryout and post-dryout phenomena with a multi-domain
coupled CFD approach. Int J Heat Mass Tran. 2020; 163: 120503.
Publisher Full Text

10.	 Maier B: Scalable biophysical simulations of the neuromuscular system.
Dissertation, University of Stuttgart. 2021.
Reference Source

11.	 Besseron X, Rousset A, Peyraut A, et al.: Eulerian-lagrangian momentum
coupling between XDEM and OpenFOAM using preCICE. In: 14th WCCM &
ECCOMAS Congress 2020, 2021.
Reference Source

12.	 Böttcher F, Davis K, Halilovic S, et al.: Optimising the thermal use of
groundwater for a decentralized heating and cooling supply in the city of
Munich, Germany. Tech. rep., Copernicus Meetings. 2021.
Publisher Full Text

13.	 Bungartz HJ, Lindner F, Mehl M, et al.: A plug-and-play coupling approach
for parallel multi-field simulations. Comput Mech. 2015; 55(6): 1119–1129.
Publisher Full Text

14.	 Gatzhammer B: Efficient and flexible partitioned simulation of fluid-
structure interactions. Dissertation, Department of Informatics, Technical
University of Munich. 2015.
Reference Source

15.	 Uekermann B: Partitioned fluid-structure interaction on massively parallel
systems. Dissertation, Department of Informatics, Technical University of
Munich. 2016.
Publisher Full Text

16.	 Lindner F: Data transfer in partitioned multi-physics simulations:
Interpolation & communication. Dissertation, University of Stuttgart. 2019.
Publisher Full Text

17.	 Bungartz HJ, Lindner F, Mehl M, et al.: Partitioned fluid-structure-acoustics
interaction on distributed Data: Coupling via preCICE. In: H.-J. Bungartz, P.
Neumann, E. W. Nagel (Eds.), Software for Exa-scale Computing – SPPEXA
2013-2015. Springer, 2016; 113: 239–266.
Publisher Full Text

18.	 Bungartz HJ, Lindner F, Gatzhammer B, et al.: preCICE – a fully parallel library

Page 39 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://github.com/precice
https://github.com/precice
https://ntrs.nasa.gov/citations/20140003093
http://www.ncbi.nlm.nih.gov/pubmed/30881691
http://dx.doi.org/10.12688/f1000research.15997.1
http://www.ncbi.nlm.nih.gov/pmc/articles/6406177
http://dx.doi.org/10.1175/BAMS-D-18-0167.1
http://dx.doi.org/10.1177/1094342012468181
http://www.ncbi.nlm.nih.gov/pubmed/33552475
http://dx.doi.org/10.12688/f1000research.23224.2
http://www.ncbi.nlm.nih.gov/pmc/articles/7845155
http://dx.doi.org/10.1007/978-3-030-47956-5_10
http://dx.doi.org/10.1007/s00466-020-01860-y
http://dx.doi.org/10.1007/978-3-030-43651-3_57
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.120503
https://books.google.co.in/books/about/Scalable_Biophysical_Simulations_of_the.html?id=YhDGzgEACAAJ&redir_esc=y
http://dx.doi.org/10.48550/arXiv.2107.07104
https://orbilu.uni.lu/handle/10993/47182
http://dx.doi.org/10.5194/egusphere-egu21-14929
http://dx.doi.org/10.1007/s00466-014-1113-2
https://mediatum.ub.tum.de/1189605
http://dx.doi.org/10.14459/2016md1320661
http://dx.doi.org/10.18419/opus-10581
http://dx.doi.org/10.1007/978-3-319-40528-5_11

for multi-physics surface coupling. Computers & Fluids. 2016; 141: 250–258.
Publisher Full Text

19.	 Chourdakis G, Davis K, Rodenberg B, et al.: preCICE Distribution Version
v2104.0. 2021.
Reference Source

20.	 Uekermann B, Bungartz HJ, Cheung Yau L, et al.: Official preCICE adapters
for standard open-source solvers. In: GACM Colloquium on Computational
Mechanics for Young Scientists from Academia and Industry, Stuttgart, Germany,
2017; 210–213.
Reference Source

21.	 Totounferoush A, Simonis F, Uekermann B, et al.: Efficient and scalable
initialization of partitioned coupled simulations with preCICE. Algorithms.
2021; 14(6): 166.
Publisher Full Text

22.	 Andrun M, Bašić J, Blagojević B, et al.: Simulating hydroelastic slamming
by coupled Lagrangian-FDM and FEM. In: HSMV 2020. IOS Press, 2020; 5:
135–142.
Publisher Full Text

23.	 Cocco A, Savino A, Montagnani D, et al.: Simulation of tiltrotor maneuvers
by a coupled multibody-mid fidelity aerodynamic solver. In: 46th European
Rotorcraft Forum (ERF 2020). 2020; 1–8.
Reference Source

24.	 Wolf K, Bayrasy P, Brodbeck C, et al.: MpCCI: Neutral interfaces for
multiphysics simulations. In: M. Griebel, A. Schüller, M. A. Schweitzer (Eds.),
Scientific Computing and Algorithms in Industrial Simulations: Projects and
Products of Fraunhofer SCAI. Springer International Publishing, Cham, 2017;
135–151.
Publisher Full Text

25.	 Pelupessy F, van Elteren A, de Vries N, et al.: The astrophysical multipurpose
software environment. Astronomy & Astrophysics. 2013; 557: A84.
Publisher Full Text

26.	 Di Natale F, Bhatia H, Carpenter TS, et al.: A massively parallel infrastructure
for adaptive multiscale simulations: modeling RAS initiation pathway for
cancer. In: Proc Int Conf High Perform Comput Netw Storage Anal. SC ’19, 2019;
1–16.
Publisher Full Text

27.	 Veen LE, Hoekstra AG: Easing multiscale model design and coupling with
MUSCLE 3. In: Int Conf Comput Sci Comput, Springer, 2020; 12142: 425–438.
Publisher Full Text

28.	 Neumann P, Flohr H, Arora R, et al.: MaMiCo: Software design for parallel
molecular-continuum flow simulations. Comput Phys Commun. 2016; 200:
324–335.
Publisher Full Text

29.	 Tang YH, Kudo S, Bian X, et al.: Multiscale universal interface: a concurrent
framework for coupling heterogeneous solvers. J Comput Phys. 2015; 297:
13–31.
Publisher Full Text

30.	 Liu W, Wang W, Skillen A, et al.: A parallel partitioned approach on fluid-
structure interaction simulation using the multiscale universal interface
coupling library. In: 14th WCCM-ECCOMAS Congress 2020. 2021; 1400.
Publisher Full Text

31.	 Groen D, Knap J, Neumann P, et al.: Mastering the scales: a survey on the
benefits of multiscale computing software. Philos Trans A Math Phys Eng Sci.
2019; 377(2142): 20180147.
PubMed Abstract | Publisher Full Text | Free Full Text

32.	 Craig A, Valcke S, Coquart L: Development and performance of a new
version of the OASIS coupler, OASIS3-MCT_3.0. Geosci Model Dev. 2017; 10(9).
Publisher Full Text

33.	 Hanke M, Redler R, Holfeld T, et al.: Yac 1.2.0: new aspects for coupling
software in earth system modelling. Geosci Model Dev. 2016; 9(8): 2755–2769.
Publisher Full Text

34.	 Liu L, Zhang C, Li R, et al.: C-Coupler2: a flexible and user-friendly
community coupler for model coupling and nesting. Geosci Model Dev. 2018;
11(9): 3557–3586.
Publisher Full Text

35.	 Janssen J, Surendralal S, Lysogorskiy Y, et al.: pyiron: An integrated
development environment for computational materials science. Comput
Mater Sci. 2019; 163: 24–36.
Publisher Full Text

36.	 Ludäscher B, Altintas I, Berkley C, et al.: Scientific workflow management and
the Kepler system. Concurr Comput. 2006; 18(10): 1039–1065.
Publisher Full Text

37.	 Slattery S, Wilson P, Pawlowski R: The data transfer kit: a geometric
rendezvous-based tool for multiphysics data transfer. In: International
conference on mathematics & computational methods applied to nuclear science &
engineering (M&C 2013). 2013; 5–9.
Reference Source

38.	 Duchaine F, Jauré S, Poitou D, et al.: Analysis of high performance conjugate
heat transfer with the OpenPALM coupler. Comput Sci Discov. 2015; 8(1):
015003.
Publisher Full Text

39.	 Totounferoush A, Naseri A, Chiva Segura J, et al.: A GPU Accelerated

Framework for Partitioned Solution of Fluid-Structure Interaction
Problems. In: 14th World Congress on Computational Mechanics (WCCM),
ECCOMAS Congress 2020): virtual congress: 11-15 January 2021. 2021; 1–11.
Publisher Full Text

40.	 Rüth B, Uekermann B, Mehl M, et al.: Quasi-Newton waveform iteration for
partitioned surface-coupled multiphysics applications. Int J Numer Methods
Eng. 2020; 122(19): 5236–5257.
Publisher Full Text

41.	 Mehl M, Uekermann B, Bijl H, et al.: Parallel coupling numerics for
partitioned fluid-structure interaction simulations. Comput Math Appl. 2016;
71(4): 869–891.
Publisher Full Text

42.	 Lindner F, Mehl M, Scheufele K, et al.: A comparison of various quasi-Newton
schemes for partitioned fluid-structure interaction. In: ECCOMAS Coupled
Problems. Venice, 2015.
Reference Source

43.	 Scheufele K, Mehl M: Robust Multisecant Quasi-Newton Variants for Parallel
Fluid-Structure Simulations—and Other Multiphysics Applications. SIAM J
Sci Comput. 2017; 39(5): 404–433.
Publisher Full Text

44.	 Küttler U, Wall WA: Fixed-point fluid-structure interaction solvers with
dynamic relaxation. Comput Mech. 2008; 43(1): 61–72.
Publisher Full Text

45.	 Bogaers A, Kok S, Reddy B, et al.: Quasi-Newton methods for implicit
black-box FSI coupling. Comput Methods Appl Mech Eng. 2014; 279: 113–132.
Publisher Full Text

46.	 Degroote J, Bathe KJ, Vierendeels J: Performance of a new partitioned
procedure versus a monolithic procedure in fluid-structure interaction.
Comput Struct. 2009; 87(11–12): 793–801.
Publisher Full Text

47.	 Scheufele K: Robust quasi-Newton methods for partitioned fluid-structure
simulations. Master’s thesis, University of Stuttgart, 2015.
Reference Source

48.	 Scheufele K: Coupling schemes and inexact Newton for multi-physics and
coupled optimization problems. Dissertation, University of Stuttgart, 2019.

49.	 Haelterman R, Bogaers A, Scheufele K, et al.: Improving the performance of
the partitioned QN-ILS procedure for fluid-structure interaction problems:
filtering. Comput Struct. 2016; 171: 9–17.
Publisher Full Text

50.	 de Boer A, van Zuijlen A, Bijl H: Comparison of conservative and consistent
approaches for the coupling of non-matching meshes. Comput Methods Appl
Mech Eng. 2008; 197(49–50): 4284–4297.
Publisher Full Text

51.	 Lindner F, Mehl M, Uekermann B: Radial basis function interpolation for
black-box multi-physics simulations. In: M. Papadrakakis, B. Schrefler, E.
Onate (Eds.), VII International Conference on Computational Methods for Coupled
Problems in Science and Engineering. 2017; 1–12.
Reference Source

52.	 Deparis S, Forti D, Quarteroni A: A rescaled localized radial basis function
interpolation on non-cartesian and nonconforming grids. SIAM J Sci Comput.
2014; 36(6): A2745–A2762.
Publisher Full Text

53.	 Balay S, Abhyankar S, Adams MF, et al.: PETSc users manual. Tech. Rep. ANL-
95/11 - Revision 3.11, Argonne National Laboratory, 2019.
Publisher Full Text

54.	 Guennebaud G, Jacob B: Eigen v3. 2010.
Reference Source

55.	 Geuzaine C, Remacle JF: Gmsh: A 3-D finite element mesh generator with
built-in pre- and post-processing facilities. Int J Numer Methods Eng. 2009;
79(11): 1309–1331.
Publisher Full Text

56.	 Simonis F, Davis K, Uekermann B: Test Setup of Turbine Blade Data Mapping.
2022.
Reference Source

57.	 Shukaev A: A fully parallel process-to-process intercommunication
technique for preCICE. Master’s thesis, Technical University of Munich, 2015.
Reference Source

58.	 Gamblin T, LeGendre M, Collette MR, et al.: The Spack pack- age manager:
bringing order to HPC software chaos. In: SC15: International Conference for
High-Performance Computing, Networking, Storage and Analysis. IEEE Computer
Society, Los Alamitos, CA, USA, 2015; 1–12.
Publisher Full Text

59.	 Volland D: Coupling TherMoS with preCICE. Master’s thesis, Technical
University of Munich, 2019.
Reference Source

60.	 Ellson J, Gansner ER, Koutsofios E, et al.: Graphviz and dynagraph – static and
dynamic graph drawing tools. In: GRAPH DRAWING SOFTWARE.
Springer-Verlag, 2003; 127–148.

61.	 Weller HG, Tabor G, Jasak H, et al.: A tensorial approach to computational
continuum mechanics using object-oriented techniques. Comput Phys. 1998;
12(6): 620–631.
Publisher Full Text

Page 40 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

http://dx.doi.org/10.1016/j.compfluid.2016.04.003
http://www.doi.org/10.18419/darus-2125
http://dx.doi.org/10.18419/darus-2125
https://www.researchgate.net/publication/321289778_Official_preCICE_Adapters_for_Standard_Open-Source_Solvers
http://dx.doi.org/10.18419/opus-9334
http://dx.doi.org/10.3390/a14060166
http://dx.doi.org/10.3233/PMST200036
http://hdl.handle.net/11311/1146478
http://dx.doi.org/10.1007/978-3-319-62458-7_7
http://dx.doi.org/10.1051/0004-6361/201321252
http://dx.doi.org/10.1145/3295500.3356197
http://dx.doi.org/10.1007/978-3-030-50433-5_33
http://dx.doi.org/10.1016/j.cpc.2015.10.029
http://dx.doi.org/10.1016/j.jcp.2015.05.004
http://dx.doi.org/10.23967/wccm-eccomas.2020.272
http://www.ncbi.nlm.nih.gov/pubmed/30967042
http://dx.doi.org/10.1098/rsta.2018.0147
http://www.ncbi.nlm.nih.gov/pmc/articles/6388006
http://dx.doi.org/10.5194/gmd-2017-64
http://dx.doi.org/10.5194/gmd-9-2755-2016
http://dx.doi.org/10.5194/gmd-11-3557-2018
http://dx.doi.org/10.1016/j.commatsci.2018.07.043
http://dx.doi.org/10.1002/cpe.994
https://www.osti.gov/biblio/22212795
http://dx.doi.org/10.1088/1749-4699/8/1/015003
http://dx.doi.org/10.23967/wccm-eccomas.2020.021
http://dx.doi.org/10.1002/nme.6443
http://dx.doi.org/10.1016/j.camwa.2015.12.025
https://www5.in.tum.de/pub/Lindner2015_MVQN.pdf
http://dx.doi.org/10.1137/16M1082020
http://dx.doi.org/10.1007/s00466-008-0255-5
http://dx.doi.org/10.1016/j.cma.2014.06.033
http://dx.doi.org/10.1016/j.compstruc.2008.11.013
https://www.researchgate.net/profile/Klaudius-Scheufele/publication/330933579_Robust_Quasi-Newton_Methods_for_Partitioned_Fluid-Structure_Simulations/links/5c5c2ef892851c48a9c16482/Robust-Quasi-Newton-Methods-for-Partitioned-Fluid-Structure-Simulations.pdf
http://dx.doi.org/10.1016/j.compstruc.2016.04.001
http://dx.doi.org/10.1016/j.cma.2008.05.001
https://upcommons.upc.edu/handle/2117/190255
http://dx.doi.org/10.1137/130947179
http://dx.doi.org/10.2172/1577437
https://eigen.tuxfamily.org/index.php?title=Main_Page
http://dx.doi.org/10.1002/nme.2579
http://www.doi.org/10.18419/darus-2491
https://www5.in.tum.de/pub/Shukaev2015_MasterThesis.pdf
http://dx.doi.org/10.1145/2807591.2807623
https://mediatum.ub.tum.de/1520580
http://dx.doi.org/10.1063/1.168744

62.	 Yau LC: Conjugate heat transfer with the multiphysics coupling library
preCICE. Master’s thesis, Technical University of Munich. 2016.
Reference Source

63.	 Chourdakis G: A general OpenFOAM adapter for the coupling library
preCICE. Master’s thesis, Technical University of Munich. 2017.
Reference Source

64.	 Risseeuw D: Fluid structure interaction modelling of flapping wings.
Master’s thesis, Delft University of Technology. 2019.
Reference Source

65.	 Chourdakis G, Uekermann B, van Zwieten G, et al.: Coupling OpenFOAM to
different solvers, physics, models, and dimensions using preCICE. In: 14th
OpenFOAM Workshop, Duisburg, Germany, 2019.
Reference Source

66.	 Seuffert J, Kärger L, Chourdakis G, et al.: Fluid structure interaction during
the resin transfer molding (RTM) manufacturing process for continuous
fiber reinforced composites. In: ECCOMAS COUPLED 2019, 2019.
Reference Source

67.	 Rousset A: 6-way coupling of DEM+CFD+FEM with preCICE. In: preCICE
Workshop 2020. 2020.
Reference Source

68.	 Arya N: Volume coupling using preCICE for an aeroacoustic simulation. In:
preCICE Workshop 2020. 2020.

69.	 Scheiblhofer S, Jäger S, Horr AM: Coupling FEM and CFD solvers for
continuous casting process simulation using preCICE. In: COUPLED VIII:
proceedings of the VIII International Conference on Computational Methods for
Coupled Problems in Science and Engineering, CIMNE, 2019; 23–32.
Reference Source

70.	 Tukovic Z, Karac A, Cardif P, et al.: OpenFOAM finite volume solver for
fluid-solid interaction. Transactions of FAMENA. 2018; 42(3).
Publisher Full Text

71.	 Cardiff P, Karac A, Jaeger PD, et al.: An open-source finite volume toolbox for
solid mechanics and fluid-solid interaction simulations. 2018.
Publisher Full Text

72.	 Hewitt S, Margetts L, Revell A, et al.: OpenFPCI: A parallel fluid–structure
interaction framework. Comput Phys Commun. 2019; 244: 469–482.
Publisher Full Text

73.	 Vencels J, Råback P, Geža V: EOF-library: Open-source Elmer FEM and
OpenFOAM coupler for electromagnetics and fluid dynamics. SoftwareX.
2019; 9: 68–72.
Publisher Full Text

74.	 Herb J: Coupling OpenFOAM with thermo-hydraulic simulation code
ATHLET. In: 9th OpenFOAM Workshop, Zagreb (Croatia), 2014.

75.	 Rave K: Kopplung von OpenFOAM und deal.II Gleichungslösern mit preCICE
zur Simulation multiphysikalischer Probleme. Bachelor’s thesis, University of
Siegen. 2017.

76.	 Schneider D: Simulation von Fluid-Struktur-Interaktion mit der
Kopplungsbibliothek preCICE. Bachelor’s thesis, University of Siegen. 2018.

77.	 Economon T, Palacios F, Copeland S, et al.: SU2: An open-source suite for
multiphysics simulation and design. AIAA Journal. 2015; 54(3): 1–19.
Publisher Full Text

78.	 Rusch A: Extending SU2 to fluid-structure interaction via preCICE. Bachelor’s
thesis, Technical University of Munich. 2016.
Reference Source

79.	 Thomas D, Cerquaglia M, Boman R, et al.: Cupydo-an integrated python
environment for coupled fluid-structure simulations. Advances in
Engineering Software. 2019; 128: 69–85.
Publisher Full Text

80.	 Burghardt O, Gauger N, Gomes P, et al.: Coupled discrete adjoints for
multi-physics in SU2. In: AIAA Aviation Forum. 2020.
Publisher Full Text

81.	 Sánchez Fernández R: A coupled adjoint method for optimal design in fluid-
structure interaction problems with large displacements. Dissertation,
Department of Aeronautics, Imperial College London. 2017.
Publisher Full Text

82.	 Dhondt G: The finite element method for three-dimensional
thermomechanical applications. John Wiley & Sons, 2004.
Publisher Full Text

83.	 Dhondt G: CalculiX CrunchiX user’s manual version 2.17. 2020.
Reference Source

84.	 Alnæs MS, Blechta J, Hake J, et al.: The FEniCS project version 1.5. Archive of
Numerical Software. 2015; 3(100).
Publisher Full Text

85.	 Langtangen HP, Logg A: Solving PDEs in Python - The FEniCS tutorial I.
Springer International Publishing, 2016.
Publisher Full Text

86.	 Rodenberg B, Desai I, Hertrich R, et al.: FEniCS-preCICE: Coupling FEniCS to
other simulation software. SoftwareX. 2021; 16: 100807.
Publisher Full Text

87.	 Rathgeber F, Ham DA, Mitchell L, et al.: Firedrake: Automating the finite
element method by composing abstractions. ACM Transactions on
Mathematical Software. 2016; 43(3).
Publisher Full Text

88.	 Bergersen AW, Slyngstad A, Gjertsen S, et al.: turtleFSI: A robust and
monolithic FEniCS-based fluid-structure interaction solver. J Open Source
Softw. 2020; 5(50).
Publisher Full Text

89.	 Hoffman J, Jansson J, Degirmenci NC, et al.: FEniCS-HPC: Coupled multiphysics
in computational fluid dynamics. In: High-Performance Scientific Computing.
2017; 58–69.
Publisher Full Text

90.	 Arndt D, Bangerth W, Blais B, et al.: The deal.II library, version 9.2. J Numer
Math. 2020; 28(3): 131–146.
Publisher Full Text

91.	 Arndt D, Bangerth W, Davydov D, et al.: The deal.II finite element library:
Design, features, and insights. Comput Math Appl. 2021; 81: 407–422.
Publisher Full Text

92.	 Bangerth W, Burstedde C, Heister T, et al.: Algorithms and data structures for
massively parallel generic adaptive finite element codes. ACM Trans Math
Softw. 2011; 38(2): 1–28.
Publisher Full Text

93.	 Kronbichler M, Wall WA: A performance comparison of continuous and
discontinuous galerkin methods with fast multigrid solvers. SIAM J Sci
Comput. 2018; 40(5): A3423–A3448.
Publisher Full Text

94.	 Arndt D, Fehn N, Kanschat G, et al.: ExaDG: High-order discontinuous
Galerkin for the exa-scale. In: H.-J. Bungartz, S. Reiz, B. Uekermann, P.
Neumann, W. E. Nagel (Eds.), Software for Exascale Computing - SPPEXA 2016-
2019. Springer International Publishing, Cham, 2020; 136: 189–224.
Publisher Full Text

95.	 Wick T: Solving monolithic fluid-structure interaction problems in arbitrary
Lagrangian Eulerian coordinates with the deal.II library. Archive of
Numerical Software. 2013; 1(1): 1–19.
Publisher Full Text

96.	 van Zwieten G, van Zwieten J, Verhoosel C, et al.: Nutils. (version 5.0). Zenodo.
2019.
Publisher Full Text

97.	 Hertrich R: Aktualisierung des preCICE-Fluent Adapters, MSE-
Forschungspraktikum project report. Technical University of Munich, 2018.
Reference Source

98.	 Vynnycky M, Kimura S, Kanev K, et al.: Forced convection heat transfer from
a flat plate: the conjugate problem. Int J Heat Mass Transf. 1998; 41(1): 45–59.
Publisher Full Text

99.	 Birken P, Quint KJ, Hartmann S, et al.: A time-adaptive fluid-structure
interaction method for thermal coupling. Comput Visual Sci. 2010; 13(7):
331–340.
Publisher Full Text

100.	 Birken P, Gleim T, Kuhl D, et al.: Fast solvers for unsteady thermal fluid
structure interaction. Int J Numer Methods Fluids. 2015; 79(1): 16–29.
Publisher Full Text

101.	 Turek S, Hron J: Proposal for numerical benchmarking of fluid-structure
interaction between an elastic object and laminar incompressible flow. In:
Fluid-structure interaction. Springer, 2006; 53: 371–385.
Publisher Full Text

102.	 Fowler M: Mocks aren’t stubs. 2007.
Reference Source

103.	 van der Walt S, Colbert SC, Varoquaux G: The NumPy array: A structure
for efficient numerical computation. Comput Sci Eng. 2011; 13(2): 22–30.
Publisher Full Text

104.	 Behnel S, Bradshaw R, Citro C, et al.: Cython: The best of both worlds. Comput
Sci Eng. 2011; 13(2): 31–39.
Publisher Full Text

105.	 Tange O: GNU parallel - the command-line power tool. login. The USENIX
Magazine, 2011; 36(1): 42–47.
Reference Source

106.	 Revell A, Afgan I, Ali A, et al.: Coupled hybrid RANS-LES research at the
University of Manchester. ERCOFTAC Bull. 2020; 120: 67.
Reference Source

107.	 Mariño J, Schäfer M: Investigation of discretization methods for simulating
multiphase flows with moving grids. In: International Conference on
Multiphase Flow. ICMF2019, 2019.
Reference Source

108.	 Folkersma M, Schmehl R, Viré A: Steady-state aeroelasticity of a ram-air
wing for airborne wind energy applications. J Phys Conf Ser. 2020; 1618(3):
032018.
Publisher Full Text

109.	 Cinquegrana D, Vitagliano PL: Validation of a new fluid—structure
interaction framework for non-linear instabilities of 3D aerodynamic
configurations. J Fluids Struct. 2021; 103: 103264.
Publisher Full Text

110.	 Huang Q, Abdelmoula A, Chourdakis G, et al.: CFD/CSD coupling for an
isolated rotor using preCICE. In: 14th World Congress on Computational
Mechanics (WCCM). IACM, Paris, France, 2021.
Publisher Full Text

111.	 Srivastava S, Damodaran M, Khoo BC: A computational framework

Page 41 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

https://www5.in.tum.de/pub/Cheung2016_Thesis.pdf
https://mediatum.ub.tum.de/1462269
https://repository.tudelft.nl/islandora/object/uuid:70beddde-e870-4c62-9a2f-8758b4e49123
https://mediatum.ub.tum.de/1515271
https://congress.cimne.com/coUPLED2019/admin/files/fileabstract/a17.pdf
https://orbilu.uni.lu/handle/10993/41617
http://hdl.handle.net/2117/189920
http://dx.doi.org/10.21278/TOF.42301
http://dx.doi.org/10.48550/arXiv.1808.10736
http://dx.doi.org/10.1016/j.cpc.2019.05.016
http://dx.doi.org/10.1016/j.softx.2019.01.007
http://dx.doi.org/10.2514/1.J053813
https://mediatum.ub.tum.de/1461810
http://dx.doi.org/10.1016/j.advengsoft.2018.05.007
http://dx.doi.org/10.2514/6.2020-3139
http://dx.doi.org/10.25560/58882
http://dx.doi.org/10.1002/0470021217
http://www.dhondt.de/ccx_2.17.pdf
http://dx.doi.org/10.11588/ans.2015.100.20553
http://dx.doi.org/10.1007/978-3-319-52462-7
http://dx.doi.org/10.1016/j.softx.2021.100807
http://dx.doi.org/10.1145/2998441
http://dx.doi.org/10.21105/joss.02089
http://dx.doi.org/10.1007/978-3-319-53862-4_6
http://dx.doi.org/10.1515/jnma-2020-0043
http://dx.doi.org/10.1016/j.camwa.2020.02.022
http://dx.doi.org/10.1145/2049673.2049678
http://dx.doi.org/10.1137/16M110455X
http://dx.doi.org/10.1007/978-3-030-47956-5_8
http://dx.doi.org/10.11588/ans.2013.1.10305
http://dx.doi.org/10.5281/zenodo.3243447
https://mediatum.ub.tum.de/doc/1462606/1462606.pdf
http://dx.doi.org/10.1016/S0017-9310(97)00113-0
http://dx.doi.org/10.1007/s00791-010-0150-4
http://dx.doi.org/10.1002/fld.4040
http://dx.doi.org/10.1007/3-540-34596-5_15
https://martinfowler.com/articles/mocksArentStubs.html
http://dx.doi.org/10.1109/MCSE.2011.37
http://dx.doi.org/10.1109/MCSE.2010.118
https://www.usenix.org/system/files/login/articles/105438-Tange.pdf
https://hal.archives-ouvertes.fr/hal-02476649
https://www.researchgate.net/publication/334726249_Investigation_of_discretization_methods_for_simulating_multiphase_flows_with_moving_grids
http://dx.doi.org/10.1088/1742-6596/1618/3/032018
http://dx.doi.org/10.1016/j.jfluidstructs.2021.103264
http://dx.doi.org/10.23967/wccm-eccomas.2020.081

for assessment of fuel sloshing effects on transonic wing flutter
characteristics. In: AIAA Scitech 2019 Forum. 2019; 1527.
Publisher Full Text

112.	 Kersschot J, Denayer H, De Roeck W, et al.: Simulation of strong vibro-
acoustic coupling effects in ducts using a partitioned approach in the time
domain. In: Proceedings of the ISMA2020 International Conference on Noise and
Vibration Engineering. Department of Mechanical Engineering, KU Leuven, 2020.
Reference Source

113.	 Nguyen VT, Gatzhammer B: A fluid structure interactions partitioned
approach for simulations of explosive impacts on deformable structures.
Int J Impact Eng. 2015; 80: 65–75.
Publisher Full Text

114.	 Zhang S, Guo XW, Li C, et al.: Numerical study of fluid-structure interaction
dynamics under high-explosive detonation on massively parallel
computers. In: 2020 IEEE 22nd International Conference on High Performance
Computing and Communications; IEEE 18th International Conference on Smart City;
IEEE 6th International Conference on Data Science and Systems (HPCC/SmartCity/
DSS). IEEE, 2020; 525–531.
Publisher Full Text

115.	 Davis K: Numerical and experimental investigation of the hemodynamics
of an artificial heart valve. Master’s thesis, University of Stellenbosch, 2018.
Reference Source

116.	 Luo Y, Xiao Q, Shi G, et al.: A fluid-structure interaction solver for the study
on a passively deformed fish fin with non-uniformly distributed stiffness.
J Fluids Struct. 2020; 92: 102778.
Publisher Full Text

117.	 De Santis D, Shams A: An advanced numerical framework for the simulation
of flow induced vibration for nuclear applications. Ann Nucl Energy. 2019;
130: 218–231.
Publisher Full Text

118.	 Desai I: Geometric aspects of code coupling in magnetic fusion
applications. Master’s thesis, Technical University of Munich, 2020.
Publisher Full Text

119.	 Schmidt P, Jaust A, Steeb H, et al.: Simulation of flow in deformable fractures
using a quasi-Newton based partitioned coupling approach. arXiv:
2104.05815. 2021.
Reference Source

120.	 Koch T, Gläser D, Weishaupt K, et al.: DuMux 3 - an open-source simulator
for solving flow and transport problems in porous media with a focus on
model coupling. Comput Math Appl. 2021; 81: 423–443.
Publisher Full Text

121.	 Firmbach M: Aeroelastic simulation of slender wings for electric aircraft.
Master’s thesis, Technical University of Munich, 2021.
Reference Source

122.	 Klimach H, Jain K, Roller S: End-to-end parallel simulations with APES. In:
Parallel computing: accelerating computational science and engineering (CSE). IOS
Press, 2014; 703–711.
Publisher Full Text

123.	 Krais N, Beck A, Bolemann T, et al.: FLEXI: A high order discontinuous
Galerkin framework for hyperbolic-parabolic conservation laws. Comput
Math Appl. 2021; 81: 186–219.
Publisher Full Text

124.	 Espinosa Pelaez FJ: A flexible approach to 2D-3D coupling of a shallow-
water equation solver to OpenFOAM. Master’s thesis, Technical University of
Munich, 2020.
Reference Source

125.	 Chourdakis G: Creating a community of contributors for scientific
open-source projects: The preCICE case. In: NL- RSE19. Amsterdam, The
Netherlands, 2019.
Reference Source

Page 42 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

http://dx.doi.org/10.2514/6.2019-1527
https://researchportal.be/en/publication/simulation-strong-vibro-acoustic-coupling-effects-ducts-using-partitioned-approach-time
http://dx.doi.org/10.1016/j.ijimpeng.2015.01.008
http://dx.doi.org/10.1109/HPCC-SmartCity-DSS50907.2020.00065
https://scholar.sun.ac.za/bitstream/handle/10019.1/105077/davis_numerical_2018.pdf?sequence=2&isAllowed=y
http://dx.doi.org/10.1016/j.jfluidstructs.2019.102778
http://dx.doi.org/10.1016/j.anucene.2019.02.049
http://dx.doi.org/10.13140/RG.2.2.18821.27368
https://arxiv.org/abs/2104.05815
http://dx.doi.org/10.1016/j.camwa.2020.02.012
https://mediatum.ub.tum.de/1609293
http://dx.doi.org/10.3233/978-1-61499-381-0-703
http://dx.doi.org/10.1016/j.camwa.2020.05.004
https://mediatum.ub.tum.de/doc/1577072/1577072.pdf
https://github.com/MakisH/nlrse19-slides

Open Peer Review
Current Peer Review Status:

Version 1

Reviewer Report 28 June 2022

https://doi.org/10.21956/openreseurope.15594.r29132

© 2022 Wells G. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Garth Wells
Department of Engineering, University of Cambridge, Cambridge, UK

This paper describes developments in the widely used, open-source preCISE library for coupling
simulation codes. It also details development practices and community building. It is a worthwhile
and valuable contribution.

My main suggestion is to shorten the paper to better highlight the important and novel aspects.
The paper is long, and I feel that the more important points are lost amongst standard and less
important material. For example, the section on a virtual machine on page 16 could be reduced to
one or two sentences. The description of each adapter in Section 4 is long and with detail, but
without enough detail to describe each adaptor fully (which would not be reasonably possible).
The descriptions could be considerably shorter whilst still conveying the main messages. Also,
with careful editing the paper could be shortened considerably, even without removing any detail.

The discussion on interpolation methods in Section 3.2 starts with the presumption of data
defined at vertices. It is not clear from the text how it works with methods that do not use vertex
degrees-of-freedom or how it works for methods where degrees-of-freedom are not point
evaluations, or how higher-order methods are handled. It would be helpful if any limitation could
be clearly stated, or if more general cases are supported then that could be explained. It would
also be helpful in this section if conservation could be considered more formally.

There are unsupported assertions in numerous places that could be removed without comprising
the main messages of the paper, e.g. on p. 3 ". . . in the most important languages used in
scientific computing" could be rephrased as ". . . in widely used languages for scientific
computing". In other places judgements on the value/importance/significance of contributions are
made rather than plain statements of what has been done. The text should be carefully reviewed
for unsupported assertions and value judgements.

Claims involving relative terms should be carefully reviewed, e.g. the last paragraph of Section 3.2
says a method "should only be used for small mesh sizes". Does this mean a mesh with few cells
or a mesh with a large number of small cells? Given that 'small' is a relative term, what does the

Open Research Europe

Page 43 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

https://doi.org/10.21956/openreseurope.15594.r29132
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0001-5291-7951

conclusions really mean?

It should be checked that all symbols are defined following their introduction in an equation.

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets
and any results generated using the tool?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Scientific computing, mathematical software

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Author Response 14 Sep 2022
Benjamin Uekermann, University of Stuttgart, Stuttgart, Germany

Thank you for the thorough review and the constructive feedback. We see the point that the
paper seems too long. We tried to address this issue in two ways: Firstly, we did indeed try
to shorten the paper where reasonable. Section 4 had indeed too many details that users
could also look up in the software documentation. Secondly, we now try to better guide
readers in the introduction on what to read when. Concerning data mapping: preCICE does
indeed expect data to be located at vertices. However, as vertices, a user could also define
cell centers, for instance. Multiple meshes per participant are supported. preCICE does
however not yet offer a good way how to deal with higher-order methods. We are tackling
this issue in current work by allowing users to shift the data mapping from preCICE to the
adapters. We added comments in the introduction of Section 3.2 to make these limitations
and also the type of currently supported conservation clearer. We carefully reviewed the
manuscript for unsupported assertions and value judgments and removed them.

Competing Interests: No competing interests were disclosed.

Reviewer Report 24 June 2022

https://doi.org/10.21956/openreseurope.15594.r29131

Open Research Europe

Page 44 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

https://doi.org/10.21956/openreseurope.15594.r29131

© 2022 Viré A. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Axelle Viré
Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands

The paper is very interesting, relevant, and well written. I suggest minor revisions.
Comment on the feasibility to couple in space of different dimensions, e.g., mapping from
volume to surface or surface to line, and vice-versa. This is relevant for a range of
applications but not covered at all as far as I can see.

○

Is it possible to couple GPU tools or is it restricted to CPU-based models?

○

Section 3.2.2 - Can you comment on the consistent or conservative character of this
method?

○

The test methodology is clearly described. But what about the review process, i.e. is there a
review process when users or community members want to push new implementations in
preCICE (e.g. for consistency of code syntax)?

○

Checkpoints and restarts are not described it seems. I assume this is all possible and works
well?

○

Are the post-processing scripts shared as well for the tutorial cases?○

Minor editing comments:
References to bibliography are not always consistent in style, e.g., page 5 "introduced in 6".

○

Page 3: 10,000s --> write in words so that the "s" is not mistaken for a unit.

○

Ensure that all variables in equations are defined, even if straightforward, e.g. very first eq
on page 5, distinction of superscripts and subscripts on page 7, etc.

○

Page 7: IQN-IMVJ: time step, an idea --> add "following" before an idea.○

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets

Open Research Europe

Page 45 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

and any results generated using the tool?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Fluid-structure interactions

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Author Response 14 Sep 2022
Benjamin Uekermann, University of Stuttgart, Stuttgart, Germany

Thank you for the thorough review and the positive words.
Comment on the feasibility to couple in space of different dimensions (...)○

We refer to such mixed-dimensional problems as geometric multi-scale coupling (following
the definition of Quateroni et al. doi:10.1016/j.cma.2016.01.007). Such problems can already
now be realized by implementing the data mapping between different dimensions within
the adapter (see for example Schmidt et al. doi:10.1007/s10596-021-10120-8). We are
currently working on dedicated geometric multi-scale data mapping methods within
preCICE as mentioned in the conclusions. We extended this part of the conclusions.

Is it possible to couple GPU tools or is it restricted to CPU-based models?○

Yes, hybrid GPU-CPU coupling is possible. A few users have done this already. We added an
explanation and mention some examples in the beginning of Section 3.

Section 3.2.2 - Can you comment on the consistent or conservative character of this
method?

○

We present and compare all data mapping methods in their consistent variant. By
transposing the corresponding system matrix a consistent method turns conservative. We
added additional explanation in the introduction part of Section 3.2, trying to point out
more clearly what we mean with consistency and conservation in our context and what the
restrictions are. In addition, we comment on the realization of consistency and conservation
in RBF data mapping methods at the end of Section 3.2.2.

The test methodology is clearly described. But what about the review process, i.e. is
there a review process when users or community members want to push new
implementations in preCICE (e.g. for consistency of code syntax)?

○

Every contribution is reviewed for functionality (does the code run and do the expected
thing?), coding practices (is the code clear and reasonable?), consistency (does the
implementation follow similar solution patterns?), and usability (is the interface intuitive and
sufficiently documented?). Pull request templates in each project remind the authors and
the reviewers of common issues to check. While these templates contain checklists, these
are not extensive, to reduce the overhead in smaller contributions. We added a note in
Section 7.

Checkpoints and restarts are not described it seems. I assume this is all possible and
works well?

○

To restart a coupled simulation, typically all coupled codes need to read checkpoints and
restart. preCICE directly supports this behavior without any modifications. preCICE itself,

Open Research Europe

Page 46 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

https://www.sciencedirect.com/science/article/abs/pii/S0045782516000098
https://link.springer.com/article/10.1007/s10596-021-10120-8

however, does (currently) not write checkpoints for restarting. This means, for instance, that
the quasi-Newton system starts from scratch again and that data mappings need to be
recomputed. For most applications, this behavior is sufficient. If ever necessary, adding
such a checkpoint-restart mechanism to preCICE itself should, however, be possible.

Are the post-processing scripts shared as well for the tutorial cases?○

Yes, they are. We write at the beginning of Section 4: "Such a tutorial consists of all the
required instructions and configuration files necessary to run the coupled simulation, as
well as convenience scripts to run, visualize, and cleanup each case."

Competing Interests: No competing interests were disclosed.

Open Research Europe

Page 47 of 47

Open Research Europe 2022, 2:51 Last updated: 30 SEP 2022

