Published November 12, 2019 | Version 4
Dataset Open

ChinaHighPM2.5: Big Data Seamless 1 km Ground-level PM2.5 Dataset for China (2000-Present)

  • 1. ROR icon University of Maryland, College Park

Description

ChinaHighPM2.5 is one of the series of long-term, full-coverage, high-resolution, and high-quality datasets of ground-level air pollutants for China (i.e., ChinaHighAirPollutants, CHAP). It is generated from big data (e.g., ground-based measurements, satellite remote sensing products, atmospheric reanalysis, and model simulations) using artificial intelligence by considering the spatiotemporal heterogeneity of air pollution. 

This is the big data-derived seamless (spatial coverage = 100%) daily, monthly, and yearly 1 km (i.e., D1K, M1K, and Y1K) ground-level PM2.5 dataset in China from 2000 to 2021. This dataset yields a high quality with a cross-validation coefficient of determination (CV-R2) of 0.92, a root-mean-square error (RMSE) of 10.76 µg m-3, and a mean absolute error (MAE) of 6.32 µg m-3 on a daily basis.

If you use the ChinaHighPM2.5 dataset for related scientific research, please cite the below-listed corresponding references first (Wei et al., RSE, 2021; Wei et al., ACP, 2020), and the reference will be updated once our new paper is accepted.

The data is continuously updated, and

        all (including daily) data for the year 2022 is accessible at: ChinaHighPM2.5 (2022)

        all (including daily) data for the year 2023 is accessible at: ChinaHighPM2.5 (2023)

        more is coming soon...

More CHAP datasets of different air pollutants can be found at: https://weijing-rs.github.io/product.html

Notes

Note that the data are recorded in local time (i.e., Beijing time: GMT+8). This dataset is continuously updated, and if you want to apply for more data or have any questions, please contact me (Email: weijing_rs@163.com; weijing@umd.edu).

Files

ATBD_ChinaHighPM2.5.pdf

Files (71.1 GB)

Name Size Download all
md5:bb88d1915090f481c37074086b746e95
3.3 MB Preview Download
md5:2587e9d4b2afcef0cb0e80a0ef5b284a
3.2 GB Download
md5:d2b8733464323d45ae3a22c8a1106e78
3.2 GB Download
md5:63e5d5ef690fd2f6104640bd579940e9
3.2 GB Download
md5:4c5e51de2a569dc5e2440e44f45c0383
3.2 GB Download
md5:d4a186d82c091b254ba1fe481c0ff796
3.2 GB Download
md5:4d6f52265eb218dadf2f97e65b047a44
3.2 GB Download
md5:752fe960f59a0b6c106b543dd6c71a6a
3.3 GB Download
md5:ba0b8a1e587b049751fb92356c5496b6
3.3 GB Download
md5:74205e12809316c39f5b98223345a047
3.3 GB Download
md5:6999f14f612d133611523b6f5546a759
3.2 GB Download
md5:0f55741975b813d5b76f81df94778f92
3.2 GB Download
md5:b186fb707c04fe78c4c13143a6edb8c3
3.3 GB Download
md5:956de0a0f5d27b72e8b52a795c9b84c8
3.3 GB Download
md5:d4deafb460a8212d0bed77115b53408e
3.2 GB Download
md5:b2ab47a2b11040587354cad3621ed311
3.2 GB Download
md5:ae5646deb14b86d2bab7f8dc0aa59d45
3.2 GB Download
md5:60ae4199e478d01acafea5a202af99da
3.1 GB Download
md5:c554fd6665afbec0549c29e962a363e6
3.0 GB Download
md5:62019b751e2e4514fa6ae6e4efba25ec
2.9 GB Download
md5:414e1ac100d9a41326b917a2a753d8af
2.8 GB Download
md5:e1c0f324573ac0de3fa040581c8f932f
2.8 GB Download
md5:062c529219cf09741d80a7b3726d451d
2.7 GB Download
md5:6f9d802c82392d5733307e6c72772a47
89.7 MB Download
md5:6578b7aedb70645e330f568f54041fc1
91.5 MB Download
md5:1a5b51e45dd9afa4d73a3f005f501c5f
91.2 MB Download
md5:db3ff7daff2f8d4a7bcb0b6d6bcaf0d7
92.3 MB Download
md5:5fc42541909edb73a2abc83f99734e48
91.9 MB Download
md5:96f3265749a4711a792efd24761dcfcd
91.1 MB Download
md5:752cf3f096a99a384793b3c6b3076085
92.6 MB Download
md5:1a5c8e604b3f907bf3db38c63cbbedad
92.9 MB Download
md5:a094a9653838d9c95014ce066477bdfa
92.0 MB Download
md5:9d28c8eb6e72889cb946e53111cf1bd7
91.9 MB Download
md5:57b519e5c90876364f05b23b5e4314d0
92.1 MB Download
md5:9bbdbe7057f2be85777ed852fb596584
92.9 MB Download
md5:e8b298b025fde6af6685b2d37ec2725e
92.2 MB Download
md5:e3133089ca1f833791a703bcebca17bf
93.1 MB Download
md5:7139ffa92817d0c98495af771e4c2057
93.2 MB Download
md5:fced22c95f2c801f9e4065fb6d4a1e64
91.0 MB Download
md5:5278b068822f31da0348d86f041d4b25
87.8 MB Download
md5:06ea220df2834b2a4dcfabc8c16b7fd5
83.7 MB Download
md5:6517136d69b881d1ea062c98df3af89e
80.1 MB Download
md5:bf54518939b6c295cabc18ba06c40f1b
76.6 MB Download
md5:cbe7166230e22c78c77927e5f25515fd
75.6 MB Download
md5:baaef6348ac87ae342bf88c55337b70b
73.7 MB Download
md5:c2382335a8d03bbac0be4b4bbb83f3d8
7.3 MB Download
md5:cf767a8708d670d667ee3361afe7a39a
7.5 MB Download
md5:5f1b9c5624a4f4b26ac062daea116331
7.4 MB Download
md5:3d804997cefbf42a7099c7ae59551d85
7.5 MB Download
md5:09d9ec13d4e6b3ad792226676b0308aa
7.5 MB Download
md5:7fbcc6c6641c2124e67aaf4c3157f79d
7.4 MB Download
md5:a5157d4888b7f150c0ef75f2b17be076
7.6 MB Download
md5:1f7d51de0abb23206477ab3642a450c0
7.6 MB Download
md5:6f874ede13910e1875875537a084e571
7.5 MB Download
md5:dcb2b47146b6fa8e2da9f5c47d547907
7.5 MB Download
md5:b52874277d6e376ab4d89a5f9a106471
7.5 MB Download
md5:5a944e71a03127ef6dcca4eddfe8de47
7.6 MB Download
md5:fee023f9ef76dbb7c4e1c3dc804abeac
7.5 MB Download
md5:076811cf62dc70aee8b5b3b57ffce2e6
7.7 MB Download
md5:e8b2a8567b3e7112b108cda6fcdfd7f4
7.6 MB Download
md5:ba03a02bb4e4082aa993ff8387e28eaa
7.4 MB Download
md5:5b93a3cba04c910f32420b5069eff06b
7.2 MB Download
md5:cf570537f85d45ef3501305354ef997e
6.8 MB Download
md5:e5ad8460e2b3933a6082eab2dfceced6
6.5 MB Download
md5:b2bbb5e17724504b6b86bab5d2b8d982
6.2 MB Download
md5:5ff0cdf7630f4d359e24047e4cec6e28
6.2 MB Download
md5:6e4bec8415f28f69950b19dbc91b3b7a
6.1 MB Download
md5:f56cd4a5162026d1d853e369b4770943
2.6 kB Download

Additional details

References

  • Wei, J., Li, Z., Lyapustin, A., Sun, L., Peng, Y., Xue, W., Su, T., and Cribb, M. Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: spatiotemporal variations and policy implications. Remote Sensing of Environment, 2021, 252, 112136. https://doi.org/10.1016/j.rse.2020.112136
  • Wei, J., Li, Z., Cribb, M., Huang, W., Xue, W., Sun, L., Guo, J., Peng, Y., Li, J., Lyapustin, A., Liu, L., Wu, H., and Song, Y. Improved 1 km resolution PM2.5 estimates across China using enhanced space-time extremely randomized trees, Atmospheric Chemistry and Physics, 2020, 20(6), 3273-3289. https://doi.org/10.5194/acp-20-3273-2020