ChinaHighPM2.5: Big Data Seamless 1 km Ground-level PM2.5 Dataset for China (2000-Present)
Description
ChinaHighPM2.5 is one of the series of long-term, full-coverage, high-resolution, and high-quality datasets of ground-level air pollutants for China (i.e., ChinaHighAirPollutants, CHAP). It is generated from big data (e.g., ground-based measurements, satellite remote sensing products, atmospheric reanalysis, and model simulations) using artificial intelligence by considering the spatiotemporal heterogeneity of air pollution.
This is the big data-derived seamless (spatial coverage = 100%) daily, monthly, and yearly 1 km (i.e., D1K, M1K, and Y1K) ground-level PM2.5 dataset in China from 2000 to 2021. This dataset yields a high quality with a cross-validation coefficient of determination (CV-R2) of 0.92, a root-mean-square error (RMSE) of 10.76 µg m-3, and a mean absolute error (MAE) of 6.32 µg m-3 on a daily basis.
If you use the ChinaHighPM2.5 dataset for related scientific research, please cite the below-listed corresponding references first (Wei et al., RSE, 2021; Wei et al., ACP, 2020), and the reference will be updated once our new paper is accepted.
-
Wei, J., Li, Z., Lyapustin, A., Sun, L., Peng, Y., Xue, W., Su, T., and Cribb, M. Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: spatiotemporal variations and policy implications. Remote Sensing of Environment, 2021, 252, 112136. https://doi.org/10.1016/j.rse.2020.112136
-
Wei, J., Li, Z., Cribb, M., Huang, W., Xue, W., Sun, L., Guo, J., Peng, Y., Li, J., Lyapustin, A., Liu, L., Wu, H., and Song, Y. Improved 1 km resolution PM2.5 estimates across China using enhanced space-time extremely randomized trees. Atmospheric Chemistry and Physics, 2020, 20(6), 3273–3289. https://doi.org/10.5194/acp-20-3273-2020
The data is continuously updated, and
all (including daily) data for the year 2022 is accessible at: ChinaHighPM2.5 (2022)
all (including daily) data for the year 2023 is accessible at: ChinaHighPM2.5 (2023)
more is coming soon...
More CHAP datasets of different air pollutants can be found at: https://weijing-rs.github.io/product.html
Notes
Files
ATBD_ChinaHighPM2.5.pdf
Files
(71.1 GB)
Name | Size | Download all |
---|---|---|
md5:bb88d1915090f481c37074086b746e95
|
3.3 MB | Preview Download |
md5:2587e9d4b2afcef0cb0e80a0ef5b284a
|
3.2 GB | Download |
md5:d2b8733464323d45ae3a22c8a1106e78
|
3.2 GB | Download |
md5:63e5d5ef690fd2f6104640bd579940e9
|
3.2 GB | Download |
md5:4c5e51de2a569dc5e2440e44f45c0383
|
3.2 GB | Download |
md5:d4a186d82c091b254ba1fe481c0ff796
|
3.2 GB | Download |
md5:4d6f52265eb218dadf2f97e65b047a44
|
3.2 GB | Download |
md5:752fe960f59a0b6c106b543dd6c71a6a
|
3.3 GB | Download |
md5:ba0b8a1e587b049751fb92356c5496b6
|
3.3 GB | Download |
md5:74205e12809316c39f5b98223345a047
|
3.3 GB | Download |
md5:6999f14f612d133611523b6f5546a759
|
3.2 GB | Download |
md5:0f55741975b813d5b76f81df94778f92
|
3.2 GB | Download |
md5:b186fb707c04fe78c4c13143a6edb8c3
|
3.3 GB | Download |
md5:956de0a0f5d27b72e8b52a795c9b84c8
|
3.3 GB | Download |
md5:d4deafb460a8212d0bed77115b53408e
|
3.2 GB | Download |
md5:b2ab47a2b11040587354cad3621ed311
|
3.2 GB | Download |
md5:ae5646deb14b86d2bab7f8dc0aa59d45
|
3.2 GB | Download |
md5:60ae4199e478d01acafea5a202af99da
|
3.1 GB | Download |
md5:c554fd6665afbec0549c29e962a363e6
|
3.0 GB | Download |
md5:62019b751e2e4514fa6ae6e4efba25ec
|
2.9 GB | Download |
md5:414e1ac100d9a41326b917a2a753d8af
|
2.8 GB | Download |
md5:e1c0f324573ac0de3fa040581c8f932f
|
2.8 GB | Download |
md5:062c529219cf09741d80a7b3726d451d
|
2.7 GB | Download |
md5:6f9d802c82392d5733307e6c72772a47
|
89.7 MB | Download |
md5:6578b7aedb70645e330f568f54041fc1
|
91.5 MB | Download |
md5:1a5b51e45dd9afa4d73a3f005f501c5f
|
91.2 MB | Download |
md5:db3ff7daff2f8d4a7bcb0b6d6bcaf0d7
|
92.3 MB | Download |
md5:5fc42541909edb73a2abc83f99734e48
|
91.9 MB | Download |
md5:96f3265749a4711a792efd24761dcfcd
|
91.1 MB | Download |
md5:752cf3f096a99a384793b3c6b3076085
|
92.6 MB | Download |
md5:1a5c8e604b3f907bf3db38c63cbbedad
|
92.9 MB | Download |
md5:a094a9653838d9c95014ce066477bdfa
|
92.0 MB | Download |
md5:9d28c8eb6e72889cb946e53111cf1bd7
|
91.9 MB | Download |
md5:57b519e5c90876364f05b23b5e4314d0
|
92.1 MB | Download |
md5:9bbdbe7057f2be85777ed852fb596584
|
92.9 MB | Download |
md5:e8b298b025fde6af6685b2d37ec2725e
|
92.2 MB | Download |
md5:e3133089ca1f833791a703bcebca17bf
|
93.1 MB | Download |
md5:7139ffa92817d0c98495af771e4c2057
|
93.2 MB | Download |
md5:fced22c95f2c801f9e4065fb6d4a1e64
|
91.0 MB | Download |
md5:5278b068822f31da0348d86f041d4b25
|
87.8 MB | Download |
md5:06ea220df2834b2a4dcfabc8c16b7fd5
|
83.7 MB | Download |
md5:6517136d69b881d1ea062c98df3af89e
|
80.1 MB | Download |
md5:bf54518939b6c295cabc18ba06c40f1b
|
76.6 MB | Download |
md5:cbe7166230e22c78c77927e5f25515fd
|
75.6 MB | Download |
md5:baaef6348ac87ae342bf88c55337b70b
|
73.7 MB | Download |
md5:c2382335a8d03bbac0be4b4bbb83f3d8
|
7.3 MB | Download |
md5:cf767a8708d670d667ee3361afe7a39a
|
7.5 MB | Download |
md5:5f1b9c5624a4f4b26ac062daea116331
|
7.4 MB | Download |
md5:3d804997cefbf42a7099c7ae59551d85
|
7.5 MB | Download |
md5:09d9ec13d4e6b3ad792226676b0308aa
|
7.5 MB | Download |
md5:7fbcc6c6641c2124e67aaf4c3157f79d
|
7.4 MB | Download |
md5:a5157d4888b7f150c0ef75f2b17be076
|
7.6 MB | Download |
md5:1f7d51de0abb23206477ab3642a450c0
|
7.6 MB | Download |
md5:6f874ede13910e1875875537a084e571
|
7.5 MB | Download |
md5:dcb2b47146b6fa8e2da9f5c47d547907
|
7.5 MB | Download |
md5:b52874277d6e376ab4d89a5f9a106471
|
7.5 MB | Download |
md5:5a944e71a03127ef6dcca4eddfe8de47
|
7.6 MB | Download |
md5:fee023f9ef76dbb7c4e1c3dc804abeac
|
7.5 MB | Download |
md5:076811cf62dc70aee8b5b3b57ffce2e6
|
7.7 MB | Download |
md5:e8b2a8567b3e7112b108cda6fcdfd7f4
|
7.6 MB | Download |
md5:ba03a02bb4e4082aa993ff8387e28eaa
|
7.4 MB | Download |
md5:5b93a3cba04c910f32420b5069eff06b
|
7.2 MB | Download |
md5:cf570537f85d45ef3501305354ef997e
|
6.8 MB | Download |
md5:e5ad8460e2b3933a6082eab2dfceced6
|
6.5 MB | Download |
md5:b2bbb5e17724504b6b86bab5d2b8d982
|
6.2 MB | Download |
md5:5ff0cdf7630f4d359e24047e4cec6e28
|
6.2 MB | Download |
md5:6e4bec8415f28f69950b19dbc91b3b7a
|
6.1 MB | Download |
md5:f56cd4a5162026d1d853e369b4770943
|
2.6 kB | Download |
Additional details
References
- Wei, J., Li, Z., Lyapustin, A., Sun, L., Peng, Y., Xue, W., Su, T., and Cribb, M. Reconstructing 1-km-resolution high-quality PM2.5 data records from 2000 to 2018 in China: spatiotemporal variations and policy implications. Remote Sensing of Environment, 2021, 252, 112136. https://doi.org/10.1016/j.rse.2020.112136
- Wei, J., Li, Z., Cribb, M., Huang, W., Xue, W., Sun, L., Guo, J., Peng, Y., Li, J., Lyapustin, A., Liu, L., Wu, H., and Song, Y. Improved 1 km resolution PM2.5 estimates across China using enhanced space-time extremely randomized trees, Atmospheric Chemistry and Physics, 2020, 20(6), 3273-3289. https://doi.org/10.5194/acp-20-3273-2020