STORM + STORM future climate scripts
Creators
- 1. Institute for Environmental Studies, Vrije Universiteit Amsterdam
- 2. U.S. Department of the Treasury
- 3. University of Southampton
- 4. Royal Netherlands Meteorological Institute
- 5. Met Office
Description
These are the Python scripts and files necessary to recreate the STORM future climate scripts presented in Bloemendaal et al (2022) "A globally consistent local-scale assessment of future tropical cyclone risk". Please read the README before using the scripts.
We recommend STORM users to also read the following documentation:
Bloemendaal et al (2020) "Generation of a global synthetic tropical cyclone hazard dataset using STORM" (https://www.nature.com/articles/s41597-020-0381-2);
Bloemendaal et al (2020) "Estimation of global tropical cyclone wind speed probabilities using the STORM dataset" (https://www.nature.com/articles/s41597-020-00720-x)
The entire STORM repository can (also) be found on Github, see www.github.com/NBloemendaal. This also includes updates to the scripts.
Files
JM_LONLATBINS_0.txt
Files
(333.6 MB)
Name | Size | Download all |
---|---|---|
md5:c9c6b0fc163d0c8c189e408d5ba5447e
|
18.3 MB | Download |
md5:dc2476a61a82c06726fad790d5639bba
|
3.4 MB | Download |
md5:caaecb0e02de53ac7bbf7254da30f274
|
3.5 kB | Download |
md5:7cd0903a54d061aa62304060d191f009
|
716 Bytes | Download |
md5:5b0cc7603db5e3bd6cc27556a5109ebd
|
8.5 kB | Download |
md5:6dfbb9d1d6a9fabb25a3c5e148a54773
|
279.3 kB | Download |
md5:0fd2558ea01015dc58ba6e77026d1a03
|
5.8 kB | Download |
md5:6629f2ad4002ca4b7ed58f19855cb778
|
8.2 kB | Download |
md5:86d946f5aa9d63d208cca24d3967e7a4
|
3.6 kB | Preview Download |
md5:0ea7ad1547520c14ed017895fbaefe08
|
3.6 kB | Preview Download |
md5:d35d5c115ccb0373af454931d692241c
|
3.6 kB | Preview Download |
md5:b87c65895c348545c9c5cbc2ba624ce2
|
3.6 kB | Preview Download |
md5:a47a3d2a8ab903e12aae7e03335ed137
|
3.6 kB | Preview Download |
md5:9ce36354f718a35547058d568bffcd04
|
3.6 kB | Preview Download |
md5:b3a0f747b8fb2069f6928d8073c7f401
|
2.8 kB | Download |
md5:fb590c297033b2656031e944eff24287
|
8.6 kB | Download |
md5:da7e6f9d3d45dcc20101845f7cd85de1
|
26.0 MB | Preview Download |
md5:bb6d158a421a72005aecbdb5a34489b1
|
26.0 MB | Preview Download |
md5:5b9cff83f0f4deb81d5f65823c053fc6
|
26.0 MB | Preview Download |
md5:ae5e48d14b0111f588ee789e7a6892cb
|
26.0 MB | Preview Download |
md5:f27a411116f1532385dd41422085cf89
|
26.0 MB | Preview Download |
md5:7aee051f6b6d23713b1d7c9e135f9d56
|
26.0 MB | Preview Download |
md5:0ee5bf96d51efe38bc8f65f852d077c6
|
26.0 MB | Preview Download |
md5:62c98dcea349c7ec6576ef9f558d2276
|
26.0 MB | Preview Download |
md5:7929d616c248fbed9a8651fe63b336ef
|
26.0 MB | Preview Download |
md5:a6e8a26c3b8438738afbe83fa3ca6321
|
26.0 MB | Preview Download |
md5:c83edcfff3ce5e2246484fa5bffc77a9
|
26.0 MB | Preview Download |
md5:52d3504f493ba56a767a9ba9ad6f1c48
|
26.0 MB | Preview Download |
md5:97e569fa5afb3c4735acb6d2d80106f3
|
156 Bytes | Preview Download |
md5:2ffd88dda5fa090b5d1e69d76510501c
|
2.2 kB | Preview Download |
md5:9e210881799e4e818fa7f3436a13c489
|
7.7 kB | Download |
md5:9dc0b29a45d412ea163589def6771b7a
|
2.3 kB | Download |
md5:1967c263a144595430bf81b1f816d673
|
6.8 kB | Download |
md5:b920559adba8a2b25cfb6486b4da941c
|
6.3 kB | Download |
md5:3a8fecba61388935b492a8a5819c6278
|
22.9 kB | Download |
md5:548c4126b59cbbb3c0bfe43177a522e0
|
3.1 kB | Download |
md5:87a58f0c95b342d5ae8a533f0f66291c
|
18.5 kB | Download |
md5:fad31461a04b0005af736fef73667bd3
|
6.4 kB | Download |
md5:116f9d0ecd6ea59a782777118331cc90
|
3.1 kB | Download |
md5:7c25db41ae6189908e0569991a6fcdc0
|
7.9 kB | Download |
md5:5fa9c745835768d4ba84be2967c38a08
|
17.0 kB | Download |
md5:ef9677890f49026a4992cc145969cbc6
|
24.0 kB | Download |
Additional details
References
- Bloemendaal et al (2022) A globally consistent local-scale assessment of future tropical cyclone risk
- Bloemendaal et al (2020) Generation of a global synthetic tropical cyclone hazard dataset using STORM
- Bloemendaal et al (2020) Estimation of global tropical cyclone wind speed probabilities using the STORM dataset