Published February 21, 2022 | Version v4
Dataset Open

Bias-corrected EURO-CORDEX RCM simulations for the OPTAIN case studies

Description

Bias-corrected EURO-CORDEX RCM simulations are available on a daily timescale for:

-period 1981-2099/2100,

-6 RCM,

-3 scenarios (RCPs 2.6, 4.5 and 8.5),

-7 variables (mean, minimum and maximum temperature, precipitation, solar radiation, wind speed at 2 m and relative humidity) and

-18 domains and 23 locations within these domains.

Bias correction and further downscaling to 0.1° was done using ERA5-Land reanalysis data with non-parametric empirical quantile mapping. Moreover, the interpolation of gridded bias-corrected climate model simulations to the locations was made using universal kriging.

Organization of the data

The name of the files are domain-type.zip, where type is gridded (NetCDF) or point (csv). Each zip file contains multiple files, organized in subfolders: experiment/modelNumber/variable.nc for gridded and experiment/modelNumber/variable-pilotFieldNumber.txt for point data, where experiment is rcp26, rcp45 or rcp85.

domain and pilotFieldNumber

domain

domain location (min and max. Longitude, min and max latitude)

pilotFieldNumber

pilot field location (longitude, latitude)

case study number

country

Name (OPTAIN case study)

01

50.95 51.45 14.55 15.05

 

 

1

DEU

Schoeps

02

46.35 47.05 6.55 7.15

2

46.816667 6.95

2

CHE

Petite Glane

02_1

46.75 47.25 7.25 7.75

1

46.983333 7.466667

 

02_34

47.35 47.85 8.35

3

4

47.433333 8.516667

47.683333 8.616667

02_5

46.15 46.65 5.95 6.45

5

46.4 6.233333

03a

46.65 47.15 17.45 17.95

1

2

3

4

46.92649 17.68246

46.9166 17.68976

46.91283 17.69754

46.91283 17.69723

3a

HUN

Csorsza

03b

46.45 46.95 16.65 17.15

 

 

3b

HUN

Felso Valicka

04

52.35 52.85 18.45 18.95

1

52.597469 18.728617

4

POL

Upper Zglowiaczka

05

46.35 46.85 15.35 15.85

 

 

5

SVN

Pesnica

06

46.45 46.95 16.15 16.65

 

 

6

HUN/SVN

Kebele/Kobiljski

07

49.85 50.35 4.75 5.25

 

 

7

BEL

La Wimbe

08

55.15 55.75 23.55 24.05

1

2

55.522057 23.799235

55.42233194 23.82580339

8

LTU

Dotnuvele

09

45.45 45.95 9.65 10.15

 

 

9

ITA

Cherio

10

59.45 59.95 10.75 11.25

1

2

3

4

5

6

7

8

59.71949 10.83576

59.6833306 10.8833298

59.6833306 10.8833298

59.665 10.9475

59.665 10.9475

59.841012 10.903597

59.757631 11.072031

59.539623 10.856447

10

NOR

Krogstad

11

46.45 46.95 17.55 18.05

1

2

46.658333 17.75583

46.656944 17.75833

11

HUN

Tetves

12

49.35 49.85 14.75 15.25

1

49.616837 15.078266

12

CZE

Cechticky

13

55.85 56.35 25.85 26.45

 

 

13

LVA

Dviete

14

59.75 60.25 17.55 18.05

 

 

14

SWE

Ingvastaan Lehstaan

 

modelNumber

modelNumber

Driving Model (GCM)

Ensemble

RCM

End date

1

EC-EARTH

r12i1p1

CCLM4-8-17

31.12.2100

2

EC-EARTH

r3i1p1

HIRHAM5

31.12.2100

3

HadGEM2-ES

r1i1p1

HIRHAM5

30.12.2099

4

HadGEM2-ES

r1i1p1

RACMO22E

30.12.2099

5

HadGEM2-ES

r1i1p1

RCA4

30.12.2099

6

MPI-ESM-LR

r2i1p1

REMO2009

31.12.2100

 

variable

variable

description

Unit

Tmean

Mean temperature

°C

Tmin

Min temperature

°C

Tmax

Max temperature

°C

prec

Precipitation

mm

solarRad

Solar radiation

MJ/m2

windSpeed

Wind speed at 2m

m/s

relHum

Relative humidity

%

 

Methodolody

Bias correction was done using non-parametric empirical quantile mapping with modified method from R package qmap. Parameters selected were: corrections for each day of the year using a moving windows for a 31 days; 100 quantiles; wet days corrections for precipitation. The reference period is 1981-2010.

The interpolation of gridded bias-corrected climate model simulations to the location was made using universal kriging  with R packages automap and gstat with (external) variables x, y, x2, y2, x*y, z, where x is latitude, y is longitude, and z is elevation. For Digital Elevation Model Shuttle Radar Topography Mission was used. If there was an error using above mentioned variables, the number of variables was reduced to x, y, x*y, z and if there was still an error to x, y, z.

 

Funding

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 862756.

Files

01-gridded.zip

Files (10.8 GB)

Name Size Download all
md5:a79e58f674c1ff3b3259db386911f87f
539.1 MB Preview Download
md5:64287aa816d2af8df5897084d11e3bc3
873.0 MB Preview Download
md5:801bc2e55c84c0ae6e9505e1f3ec6306
27.6 MB Preview Download
md5:fbf8c22b080109be4a9675f0ea4ef8d4
538.8 MB Preview Download
md5:5f192a6f08ee605f40cea18e975d09b9
27.5 MB Preview Download
md5:296a3d52317a0691ebca8d41e629096d
538.3 MB Preview Download
md5:6837d755acd47a07a8b0e20db1f7461d
55.1 MB Preview Download
md5:975ebcfdd60b187b698c51b0dcedccf9
538.6 MB Preview Download
md5:f4de91875d158583a260635b9f3d9139
27.6 MB Preview Download
md5:f6258a38e8fe2a3014b20d3ab87f5cb2
537.7 MB Preview Download
md5:a3897a83ac64be5e392b2f9b9ca1ef2a
110.1 MB Preview Download
md5:fc1df16d4d53dedf265686861ebf49cc
537.1 MB Preview Download
md5:9b47871ce5c5664fedbe1de17fd60ca5
538.6 MB Preview Download
md5:0206831acd09ae9c19f6086e31b2d7e3
27.6 MB Preview Download
md5:3890e8f04461ac33f4654be3848ae924
537.3 MB Preview Download
md5:33c0edc0b39c5806e15aa86f6933664a
537.2 MB Preview Download
md5:5e7853d7541b57750c399521b56a0e45
537.5 MB Preview Download
md5:7d10cfd0b1e13d2c40d8be5ef2784794
641.1 MB Preview Download
md5:7955b52b598b76764940f01ed4e79c47
55.3 MB Preview Download
md5:76a33464ad433d2a148df46c8bebf0da
535.6 MB Preview Download
md5:97e41628499dfffc0a10d90daff0f940
542.6 MB Preview Download
md5:a96ea2279fdbe8adc2d90ae33d3e34be
137.8 MB Preview Download
md5:92cba3633abd586b012ea5f8f8a4ccac
537.4 MB Preview Download
md5:1c41fecb71aadbaa93b6d1e8559b944d
55.0 MB Preview Download
md5:3136a6c6da71321fcb78235a97b6cd71
539.8 MB Preview Download
md5:444323de26eea4ff1ae431fd294f8b48
27.7 MB Preview Download
md5:3b6e847bad8adf621c8f2147669ff278
641.6 MB Preview Download
md5:2cb2628d17e3717929606634026a183c
542.0 MB Preview Download

Additional details

References