Dataset Open Access

Convolutional neural network and data used for applied soundscape classification with Soundscapes 2 Landscapes (S2L)

Colin A. Quinn; Patrick Burns; Gurman Gill; Shrishail Baligar; Rose L. Snyder; Leonardo Salas; Scott J. Goetz; Matthew L. Clark

This repository documents the ABGQI-CNN manuscript (DOI: https://doi.org/10.1016/j.ecolind.2022.108831). It contains supplementary materials, data used to train a soundscape classification convolutional neural network (CNN), and data to generate manuscript results. The accompanying code can be found at https://doi.org/10.5281/zenodo.6038459. Files include:

  • ABGQI-CNN.tar: saved CNN model weights for the 5-class soundscape classifier using a MobileNetV2 architecture pre-trained with bird vocalization data.
  • ABGQI_mel_spectrograms.tar: spectrograms used for fine-tuning the pre-trained CNN, above, with training, validation, and testing data splits.
  • freesound_licensing.csv: file names and license information related to Freesound auxiliary files.
  • RavenLite_Training_Data_Collection.pdf: a manual for RavenLite ROI annotation.
  • S2L_site_geog-env_data.csv: environmental and geographic data (sans GPS) related to site locations in S2L project 2017-2020.
  • site_avg_ABGQIU_fscore_075_daytime.csv: the average site rate of soundscape components for 5 a.m. to 8 p.m.
  • site_by_hour_ABGQIU_fscore_075.csv: the average hourly site rate of soundscape components
  • site_classifications_beta075.tar: a directory containing a CSV for every site with threshold optimized classifications for each 2-s Mel spectrogram
  • site_prediction_probabilies.tar: a directory containing a CSV for every site with ABGQI-CNN probabilities for each 2-s Mel spectrogram
  • Supplementary_Materials.pdf: includes additional material and analyses related to the accompanying manuscript. 

Contact Colin Quinn at cq73@nau.edu for questions related to this repository or if you have an interest in the original wav recordings. Please be aware that underlying software, specifically for the CNN implementation, may not continue stability as python libraries are updated.

Files (4.0 GB)
Name Size
ABGQI-CNN.tar
md5:6dbe802addcd68841a6eac89b21b843b
55.5 MB Download
ABGQI_mel_spectrograms.tar
md5:130c85df4c66d28a9ef77fc559d980b5
970.5 MB Download
freesound_licensing.csv
md5:493638329a733745cc759c3f6f03d349
22.3 kB Download
RavenLite_Training_Data_Collection.pdf
md5:46285e87f154ac0c4b1a91f208d11985
1.6 MB Download
S2L_site_geog-env_data.csv
md5:550cfc289e08509dbec2404b03f4de48
60.7 kB Download
site_avg_ABGQIU_fscore_075_daytime.csv
md5:95a294faccfa43befcec95f137f0e731
100.1 kB Download
site_by_hour_ABGQIU_fscore_075.csv
md5:da9d3dfd7ae595d71c2a8942c8c134c3
1.5 MB Download
site_classifications_beta075.tar
md5:7659bd99c890d0e90c377a278beb8721
847.5 MB Download
site_prediction_probabilies.tar
md5:a826dc8948ccf66a84525a3789fd1b3d
2.1 GB Download
Supplementary_Materials.pdf
md5:d50f6942956cb08c2c335692bbf930fc
1.1 MB Download
96
119
views
downloads
All versions This version
Views 9696
Downloads 119119
Data volume 24.9 GB24.9 GB
Unique views 8282
Unique downloads 6161

Share

Cite as