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Supplementary Material - Methods 

S.1.  Sonoma County geography information and Soundscapes 2 Landscapes site stratification: 

forest chemistry and structure 

Seasonal average precipitation in Sonoma County is 247 mm in spring [March – May], 9 mm in 

summer [June – August], 185 mm in fall [September – November], and 600 mm in winter [December 

– February] (NOAA, 1981–2010 U.S. Climate Normals: Ground stations in the county). Natural 

vegetation in Sonoma County includes evergreen conifer (Coastal redwoods [Sequoia sempervirens], 

Douglas fir [Pseudotsuga menziesii]) and broadleaf forests (Tan oak [Notholithocarpus densiflorus], 

Coast live oak [Quercus agrifolia]) in western coastal mountains, as well as mixed forests of 

deciduous (Black oak [Quercus kelloggii], Oregon white oak [Quercus garryana], California buckeye 

[Aesculus californica]) and evergreen broadleaf trees (Coast live oak), conifers (Douglas fir) and 

shrubs. 

We used stratified random sampling to identify locations for ARUs across Sonoma County. The 

geographic information systems (GIS) software ArcGIS Pro software was used to create strata based 

on county-wide GIS data (i.e., terrain, streams, land cover), canopy chemistry (i.e., chlorophyll, 

nitrogen, lignin, water) metrics from summer 2017 airborne hyperspectral imagery (Clark & Kilham, 

2016), and forest structure metrics (derived using LAStools) from 2013 airborne lidar. We first 

stratified the county into upland and lowland zones using a digital elevation model. A county land-

cover map (http://sonomavegmap.org/data-downloads/) was used to separate annual croplands, 

developed areas, grasslands, native forests, orchards, shrublands, vineyards, urban-wildland, and 

other areas. Further, riparian corridors were delineated as 25-m from lidar-derived streams. Forests 

were separated into six chemical and structural variation levels based on principal component analysis 

applied to multi-seasonal hyperspectral and lidar metrics, respectively. Many of these random sample 

points fell in inaccessible terrain (e.g., in a ravine or atop a steep hill); therefore, when deploying 

ARUs, citizen scientists chose a subset of the random sample points on each property based on 

navigation feasibility. When no stratified sample points fell on the property (usually due to small 

property size), or when none of the sample points were accessible, we defined a set of parameters for 

the citizen scientist to use to select a site on the property: (1) away from the road and house, (2) >50 

meters from any bird feeders on the property, (3) feasible to navigate to, and (4) use no a priori 

knowledge regarding bird activity. 

S.2.  Sampling effort – LULC by-year count of S2L sites 

Table S.2.1 
Count of LULC sites by year 

Year 

Urban/ 

Developed 

Agriculture/ 

Barren Herbaceous Shrubland 

Riparian/ 

Wetland 

Oak/Hardwood 

Forest 

Conifer 

Forest 

Total 

2017 2 4 15 8 0 63 30 122 

2018 0 0 20 6 6 30 27 89 

2019 10 3 78 25 15 111 103 345 

2020 3 4 34 8 0 79 62 190 

Total 15 11 147 47 21 283 222 746 

 

S.3.  ROI recording file sampling distribution by the hour of the day 
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S.4.  Regions of interest sound class composition 

Table S.4.1 

Target soundscape classes and specific sounds that compose each class are used to annotate 

regions of interest. Total spectrogram samples, including Freesound, are noted in parentheses. 

Sound Class Included sounds 

Anthropophony Air traffic (n = 398), vehicle horn (n = 53), vehicle traffic (n = 828), rail 

traffic (n = 23), siren (n = 17), machinery (e.g., generators, chain saws; n = 

781), human voice (n = 70) 

Biophony Birds (n = 1,745), insects (n = 667), amphibians (n = 778), mammals (n = 

146) 

Geophony Rain (n = 415), wind – constant (n = 484), wind – gust (n = 432), stream (n 

= 589), ocean (n = 35) 

Quiet Little to no perceptible noise, i.e., background (n = 1,023) 

Interference Broad frequency physical or electronic recording disturbance (n = 430) 

 

S.5.  Sound class normalized spectral power characteristics – power and frequency 

Power spectral density plots display power along the frequency domain used for the CNN (0-11 kHz). 

They were calculated using the discrete fast Fourier transform (Dfft) from the package fftw (version 

1.0-5) and a 32-ms window from which power was derived using 
|𝐷𝑓𝑓𝑡|2

𝑛 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
. This calculation was done 

on a single, concatenated .wav file containing all 2-s ROI segments for each model class. These plots 

demonstrate the frequency regions with high and low levels of power. To note, quiet contains a 

majority of its signal power in low-frequency regions (<500 Hz) primarily due to the inherent noise 

from the recording device. Comparatively, other sound classes vary in power along with the 

frequency range. Anthropophony has high power at low frequencies, fading to minimal power above 

6 kHz. Biophony shows the recorder activity at low frequency and then a range of activity through 
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higher frequencies. Geophony displays most of its power below 1 kHz with a 7-9 kHz spike. 

Interference has a consistent amount of power long the frequency range reflecting its characteristic 

broadband frequency signature. 

 

 

  

 

 

 

 

S.6.  ROI identification and Mel Spectrogram generation methods 
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Mel Spectrogram creation 

The 2-s Mel spectrograms were created using Python’s librosa library, version 0.6.3, using an HTK 

implementation with the following parameters: max frequency = 11,025 Hz, sampling rate = 22,050, 

fast Fourier transfer window = 728, 32 samples per frame (a temporal resolution control), and 128 

Mels displayed on the linear frequency scale (converting the power spectrogram to decibel (dB) 

units).  

 

Freesound event detection and segmentation 

Freesound filenames are provided in the project Zenodo repositories. Each Freesound file was 

listened to for quality by C.Q. (i.e., was the intended sound present) and relative clarity (i.e., was the 

intended signal identifiable or mixed significantly with other signals). We identified potential ROIs 

with R version 4.0.2 through RStudio version 1.3.1093 using autodetec function in warbleR package 

(Araya-Salas ad Smith-Vidaurre, 2017), which provided start and stop times of possible ROIs. We 

used start and end times of events to generate Mel spectrograms in Python, following the same 

methods as S2L ROI segmentation. 

 

S.7.  Augmentation experiment 

We applied a single augmentation, shifting the pitch of samples using librosa.effects.pitch_shift. The 

pitch was offset using a random value from a Gaussian normal distribution (mean = 0, sd = 0.25) 

(Lasseck 2019). These data were included in only the training data split – increasing the dataset from 

7,814 to 15,628 samples (augmented files were not included from the validation or test datasets). 

Accuracy was higher with augmentation using the same CNN architecture, S2L bird vocalization 

pretraining, and Freeesound data (F0.75 score increase of 0.070).  

Table S.7.1 

Evaluation metrics from test data following recording 

augmentation 

 Precision Recall F0.75-score 

Anthropophony 1.000 0.880 0.961 

Biophony 0.939 0.920 0.929 

Geophony 0.978 0.880 0.926 

Quiet 0.960 0.960 0.960 

Interference 0.980 0.980 0.980 

Avg. 0.970 0.924 0.953 

 

However, because our spectrogram generation and test dataset code were not adapted for 

augmentation of the dataset following training, the training dataset includes augmented spectrograms 

of all the non-augmented testing data. This may positively bias our testing metrics. To provide an 

independent assessment of how augmentation influences model performance, we used the soundscape 

validation dataset (S.12) to compare with the non-augmented performance (ABGQI-CNN). We did 

not utilize augmentation at this time because soundscape validation performance was only marginally 

improved at the cost of a doubling in training computation time. However, other augmentation, 

especially mixed signals or multilabel data, could improve performance and is worth further 

investigation. 
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Table S.7.2 

Evaluation metrics derived from the soundscape-validation 

dataset following recording augmentation 

 Precision Recall F1-score 

Anthropophony 0.564 0.562 0.563 

Biophony 0.937 0.827 0.879 

Geophony 0.670 0.691 0.680 

Interference 0.682 0.905 0.778 

 

S.8.  S2L bird ROI data for MobileNetv2 pre-training 

The Soundscapes to Landscapes project has amassed ~750,000 minutes of data (4.3 Terabytes), from 

which we needed citizen scientists (CS) to help collect sample clips of bird calls and songs for 

training deep learning bird classification models. We used the web-based Arbimon platform to 

facilitate this work, allowing users to sort, visualize, listen to, and identify bird vocalizations from 

sound recordings (Aide et al., 2013). We partnered with Sieve Analytics (the platform’s creator) to 

design a custom C.S. interface for bird call/song reference data collection. 

In the Arbimon CS interface, a volunteer with bird-call identification knowledge (i.e., “expert”) 

delineates a bounding box representing a single bird call or song within a 1-minute spectrogram. The 

system then uses this template region of interest (ROI) and a pattern matching algorithm (LeBien et 

al. 2020) to find similar ROIs above a specified correlation threshold in our extensive collection of 

sound recordings. This results in hundreds to thousands of potential matches. The expert 

experimented with the template used and the correlation threshold to provide as many present ROI 

matches as possible for C.S. review while minimizing the number of clips where the bird was absent. 

Experts generally varied the threshold by species (minimum=0.075, maximum=0.45, average=0.29) 

with up to 10 matches per recording and up to 500 matches per site between 5 a.m. to 7 p.m. for 

diurnal species and 8 p.m. to 6 a.m. for nocturnal species. 

The Arbimon CS interface allows user- and expert-level C.S. to quickly validate if matched ROIs 

include the bird call or song found in the template ROI. Using the template ROI as a reference, the 

user-level C.S. can validate a given matched ROI by assessing the visual spectrogram pattern or by 

listening to the sound clip, a process that needs minimal training and requires no a priori knowledge 

of bird calls. The system records validations of the same ROI among multiple user-level C.S. and 

provides a consensus vote. We chose a threshold of three user-level C.S. votes for either present or 

absent to reach a consensus, and matched ROIs had a maximum of five votes before a given ROI 

entered a validated set and was removed from further review. The expert C.S. can view statistics for 

all C.S. to compare their relative accuracy and make adjustments, such as improving training to 

reduce errors. Additionally, expert C.S. can provide sole votes on ROIs to quickly boost the number 

of present ROIs in the reference data, and they can also review consensus validations to reduce false 

presences. This approach allowed our C.S. to develop large numbers of reference ROI data for 54 

species of birds with 178,160 absences and 51,906 presences. 

S.9.  ABGQI-CNN training  

The ABGQI-CNN was trained in two stages: (1) model training on the classifier only (i.e., dense, 

fully-connected layer), freezing all other trainable parameters for 10 epochs (learning rate = 0.0001), 

and (2) fine-tuning the network by freezing layers 1-50 and adjusting the final 105 layers for 10 more 

epochs. See GitHub code repository for code used to fine-tune the pre-trained MobileNetV2 CNN 
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(1_fine-tune_ABGQI-CNN.ipynb). Model weights were saved only when the internal validation loss 

decreased.  

S.10.  Soundscape modeling, multivariate regression methods 

We began with a full model that included all candidate variables, quadratic and cubic distance to 

road, interactions between LULC with road distance, and interaction between sound type with road 

distance. We also generated a model containing only soundType acting as the simplest model we 

explored. Below are our calls to the linear modeling command in R and a table explaining each 

covariate and the response. If a description includes a count (n), this represents a categorical variable. 

We included nonlinear terms represented with a caret (^) and interactions between two covariates 

represented with (*). Model fit was evaluated using MASS::stepAIC, with forward and backward 

selection starting with the full model. At each step, model fit was evaluated, and the covariate with 

the lowest AIC, which may give less information to the model, is eliminated, and the model is refit 

and reevaluated iteratively.  

Table S.10.1 

Description of response and covariates for the linear regression modeling 

Response Description 

logitRate Logit value of the rate of positively predicted 2-s samples at the 

site. Positively predicted 2-s samples are the count of samples 

predicted positive. The rate of positive predicted samples is 

calculated as 
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
. Each site (n =746) then had five 

observations/rows, one for each soundType.  

  

Covariate Description 

LULC Land use land cover classes (n = 7). 

logRoadDist The natural logarithm of the distance to the nearest road from 

the observation. 

Year The year recordings took place (n = 4). 

Log(Number_of_spectrograms) The log of the number of total 2-s spectrograms at the site. A 

measure of sampling effort. 

soundType The class of sound  (n = 5). Each sound was modeled as an 

offset in this model.   

Recorder ARU model (n = 2). 

DOY The day of initial field deployment. A measure of seasonality. 

 

Full model (AIC = 13702.69): 

lm(formula = logitRate ~ LULC + I(logRoadDist^2) + I(logRoadDist^3) + Year + 

log(number_mel_spectrograms) + soundType + Recorder + DOY + LULC*logRoadDist + 

soundType:logRoadDist) 
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Simple model (AIC = 13769.80): 

lm(formula = logitRate ~ soundType) 

Final model (AIC = 13687.75): 

lm(formula = logitRate ~ LULC + Year + log(number_mel_spectrograms) + soundType + 

logRoadDist + soundType:logRoadDist) 

 

S.11.  Cross-validation F(β) threshold results 

In the optimal cross-validation iteration F0.75-score model, there were 15.6% unidentified test ROIs, 

which decreased to 9.2% with the optimal F1-score model. However, this improvement in the F1-

score model reducing unidentified samples came at the cost of 0.033 overall lower precision. Change 

in average precision was similar from the F0.50-score model (0.968 ± 0.032) to the F0.75-score 

model (0.936 ± 0.038); however, average recall was low for the F0.50-score model (0.760 ± 0.100) 

compared to the F0.75-score model (0.804 ± 0.055) coupled with 21.6% unidentified data in the 

optimal F0.50-score model. F0.75-score decreased the amount of unidentified sound relative to 

F0.50-score while decreasing false positives compared to the F1-score thresholds. Increasing the 

F(β)-score in threshold optimization resulted in lower threshold values (i.e., more liberal 

classification of positive predictions) and higher false-positive rates. 

 

Table S.11.1  

Cross-validation model performance for F(β) threshold values based on 

withheld test data for each sound class.  

F(β) threshold Precision Recall F0.75-score F1-score 

0.50 0.940 ± 0.02 0.698 ± 0.04 0.829 ± 0.03 0.795 ± 0.03 

0.75 0.902 ± 0.03 0.754 ± 0.03 0.838 ± 0.03 0.817 ± 0.03 

1.00 0.844 ± 0.04 0.815 ± 0.04 0.829 ± 0.03 0.825 ± 0.03 

 

S.12.  Soundscape-validation: an independent assessment of accuracy 

For soundscape validation, we randomly sampled recordings from the entire S2L dataset based on a 

stratification determined by time and acoustic indices (Salas 2020). First, a suite of acoustic indices 

was calculated: Acoustic Complexity Index, Acoustic Evenness Index, Acoustic Diversity Index, 

Normalised Difference Soundscape Index, Acoustic Entropy Index, Temporal Entropy (Sueur et al. 

2014), and Bioacoustic Index (Boelman et al. 2007). We first split recordings by time of day: dawn (6 

a.m. to 9 a.m.), mid-day (11 a.m. to 2 p.m.), and late afternoon (4 p.m. to 7 p.m.). We then applied a 

K-mean clustering to acoustic indices to produce clusters within each period. We chose the number of 

clusters by examining the drop of the within-cluster mean sum of squared errors (MSE) and selected a 

number that represented the point where the MSE reached an asymptotic value from which adding 

clusters minimally decreased the within-cluster MSE. In all three time periods, the number of clusters 

chosen was 6. We sampled 50 recordings per cluster, yielding 900 GV samples for review, of which 

710 were reviewed.  

The 710 recordings were listened to for the presence and absence of anthropophony, biophony, 

geophony, and interference at the 1-min level. At the review, quiet was not established as a modeling 

class and is omitted here. We compared reviewed recordings to 2-s spectrogram ABGQI-CNN 
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predictions aggregated to the 1-min level (presence and absence) and generated confusion matrix 

classification evaluation metrics. We expect these evaluation metrics to be lower than the test dataset 

metrics as this test reflects the accuracy of our applied analyses while test metrics reflect model 

accuracy. We observe high accuracy for biophony and interference and lower accuracy for 

anthropophony and geophony. 

Table S.12.1 

Soundscape validation accuracy at the 1-min recording level.  

 True Pos. False Pos. False Neg. True Neg. Precision Recall F1-score 

Anthropophony 131 108 72 396 0.548 0.645 0.593 

Biophony 437 35 101 134 0.926 0.812 0.865 

Geophony 204 118 116 269 0.634 0.638 0.636 

Interference 287 110 30 280 0.723 0.905 0.804 

 

 

S.13.  Summary of soundscape classes in a random sample of unidentified samples 

We randomly selected 60 recordings with significant unidentified predictions (1-min recordings with 

greater than the median number of 2-s samples with unidentified) and included a summary of what 

soundscape classes author C.Q. heard during each 2-s unidentified sample (n = 832).  

 

The most significant samples remained unidentifiable due to static, distant ambiguous low-frequency 

noise or masking by other sounds. Anthropophony was the next most commonly unidentified and 

included sounds we did not have in the ROI training set (i.e., talking, digital beeping) or were faint 

that may not display in the Mel spectrograms (distant traffic or plane). This latter point was also the 

case with biophony and geophony. A significant number of samples with biophony were extremely 

faint and may not have resolved in the 2-s Mel spectrograms. Other prominent issues included a 

persistent electronic buzz in recordings between 7-10 kHz that may have masked other sounds. Co-

occurring, mixed classes appear to have been missed in some cases, though at a lower rate than the 

faint signals or ambiguous noises described above.  

 

Table S.13.1 

Percent of sound types that co-occur during 2-s 

unidentified samples from CNN 

Sounds Count Percent 

Unknown noise 129 15.5% 

Anthropophony (A) 113 13.6% 

Quiet (Q) 81 9.75% 

Biophony (B) 76 9.15% 

Geophony (G) 72 8.7% 

B + I 70 8.4% 
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B + G 70 8.4% 

Interference (I) 63 7.6% 

A + B 60 7.2% 

A + I 28 3.4% 

A + B + I 20 2.4% 

G + I 22 2.7% 

B + G + I 19 2.3% 

A + G  6 0.7% 

A + G + I 1 0.1% 

A + B + G 1 0.1% 

 

 

S.14.  Amount of sound stratified by year 

The amount of sound for each sound type is shown below, grouped by site. 
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S.15.  Pairwise test statistic summary tables 

Table S.15.1  

Sample counts for paired test 

groups—number of sites per 

LULC. 

LULC n 

Urban/Developed 15 

Agriculture/Barren 11 

Herbaceous 147 

Shrubland 47 

Riparian/Wetland 21 

Oak/Hardwood Forest 283 

Conifer Forest 221 

 

Section 3.2.1: Diurnal LULC patterns 

 

Table S.15.2 

Mann-Whitney’s U tests reveal significant 

differences in the amount of day and night sound. 

Significant tests in bold (p < 0.05). 

Soundscape class U p-value 

Anthropophony 2.364x107 0.0000 

Biophony 1.917x107 0.0000 

Geophony 3.464x107 0.0000 

Quiet 5.032x107 0.0000 

Interference 3.161x107 0.0000 

Unidentified 3.556x107 0.0000 

 

Section 3.2.2: Annual and date of deployment differences 

 

Table S.15.3 

The number of sites (sample counts) for non-

overlapping and overlapping deployment dates by 

year. Overlapping date range: May-01 to July-05 
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Year Non-overlapping n Overlapping n 

2017 122 65 

2018 89 46 

2019 345 193 

2020 190 156 

 

Table S.15.4 

Kruskal-Wallis analysis testing significant 

differences in the amount of sound among years 

when subset to overlapping deployment dates 

(May-01 to July-05). Significant tests in bold (p < 

0.05). 

Soundscape class Chi-square (χ2) p-value 

Anthropophony 35.049 1.19x107 

Biophony 29.582 1.69x106 

Quiet 75.744 2.51x1016 

 

Table S.15.5 

Dunn analyses testing significant differences of annual 

sound for overlapping deployment dates (May-01 to July-

05). Significant pairs in bold (p-adj < 0.05). 

Soundscape class Year pair z value p-adj value 

Anthropophony 2017-2018 0.4824 1.0000 

2017-2019 3.4100 0.003898 

2017-2020 -0.8233 1.0000 

2018-2019 2.4139 0.09469 

2018-2020 -1.2785 1.0000 

2019-2020 -5.6710 8.516x108 

Biophony 2017-2018 1.9850 0.2829 

2017-2019 4.6692 1.814x105 

2017-2020 5.0657 2.442x106 

2018-2019 1.7501 0.4806 
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2018-2020 2.1778 0.1765 

2019-2020 0.7267 1.0000 

Quiet 2017-2018 -1.0886 1.0000 

2017-2019 -7.7693 4.737x1014 

2017-2020 -5.3004 6.932x107 

2018-2019 -5.5123 2.124x107 

2018-2020 -3.4138 0.003843 

2019-2020 3.0806 0.01240 

 

 

Section 3.2.3:  Daytime LULC stratification 

 

Table S.15.6 

Kruskal-Wallis analysis testing significant 

differences of LULC daytime sound. Significant 

tests in bold (p < 0.05). 

Soundscape class Chi-square (χ2) p-value 

Anthropophony 97.798 0.0000 

Biophony 18.891 0.004351 

Geophony 4.8538 0.5627 

Quiet 109.92 0.0000 

 

Table S.15.7 

Dunn analyses testing significant differences of LULC daytime sound for significant Kruskal-

Wallis tests. Significant pairs in bold (p-adj < 0.05). 

Soundscape class LULC pair z value p-adj value 

Anthropophony Urban/Developed - Agriculture/Barren -1.0425 1.0000 

Urban/Developed - Herbaceous -3.1630 0.03279 

Urban/Developed - Shrubland -4.5056 0.0001390 

Urban/Developed - Riparian/Wetland -0.9831 1.0000 

Urban/Developed - Oak/Hardwood Forest -4.9930 1.249x105 

Urban/Developed - Conifer Forest -5.9314 6.310x108 
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Agriculture/Barren - Herbaceous -1.4188 1.0000 

Agriculture/Barren - Shrubland -2.7537 0.1238 

Agriculture/Barren - Riparian/Wetland 0.2190 1.0000 

Agriculture/Barren - Oak/Hardwood Forest -2.9581 0.06501 

Agriculture/Barren - Conifer Forest -3.7830 0.003255 

Herbaceous - Shrubland -2.8575 0.08968 

Herbaceous - Riparian/Wetland 2.2504 0.5129 

Herbaceous - Oak/Hardwood Forest -4.5794 9.793x105 

Herbaceous - Conifer Forest -6.8184 1.934x1010 

Shrubland - Riparian/Wetland 3.8243 0.002754 

Shrubland - Oak/Hardwood Forest 0.08411 1.0000 

Shrubland - Conifer Forest -1.5333 1.0000 

Riparian/Wetland - Oak/Hardwood Forest -4.3797 0.0002495 

Riparian/Wetland - Conifer Forest -5.4752 9.177x107 

Oak/Hardwood Forest - Conifer Forest -2.8939 0.07989 

Biophony Urban/Developed - Agriculture/Barren -1.7355 1.0000 

Urban/Developed - Herbaceous -1.1698 1.0000 

Urban/Developed - Shrubland -0.8144 1.0000 

Urban/Developed - Riparian/Wetland 0.3717 1.0000 

Urban/Developed - Oak/Hardwood Forest -0.0170 1.0000 

Urban/Developed - Conifer Forest -1.0343 1.0000 

Agriculture/Barren - Herbaceous 1.1896 1.0000 

Agriculture/Barren - Shrubland 1.3358 1.0000 

Agriculture/Barren - Riparian/Wetland 2.1886 0.6012 

Agriculture/Barren - Oak/Hardwood Forest 2.2271 0.5447 

Agriculture/Barren - Conifer Forest 1.3370 1.0000 

Herbaceous - Shrubland 0.4510 1.0000 

Herbaceous - Riparian/Wetland 1.8978 1.0000 
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Herbaceous - Oak/Hardwood Forest 3.0745 0.04428 

Herbaceous - Conifer Forest 0.3869 1.0000 

Shrubland - Riparian/Wetland 1.3988 1.0000 

Shrubland - Oak/Hardwood Forest 3.0745 1.0000 

Shrubland - Conifer Forest -0.2145 1.0000 

Riparian/Wetland - Oak/Hardwood Forest -0.5754 1.0000 

Riparian/Wetland - Conifer Forest -1.7590 1.0000 

Oak/Hardwood Forest - Conifer Forest -3.0275 0.05178 

Quiet Urban/Developed - Agriculture/Barren 0.7280 1.0000 

Urban/Developed - Herbaceous 2.0062 0.9414 

Urban/Developed - Shrubland 4.6819 5.968x105 

Urban/Developed - Riparian/Wetland -0.4612 1.0000 

Urban/Developed - Oak/Hardwood Forest 4.5876 9.414x105 

Urban/Developed - Conifer Forest 4.5724 0.0001013 

Agriculture/Barren - Herbaceous 0.8152 1.0000 

Agriculture/Barren - Shrubland 3.2825 0.02161 

Agriculture/Barren - Riparian/Wetland -1.1953 1.0000 

Agriculture/Barren - Oak/Hardwood Forest 3.0149 0.05398 

Agriculture/Barren - Conifer Forest 3.0135 0.05424 

Herbaceous - Shrubland 5.0405 9.751x106 

Herbaceous - Riparian/Wetland -2.9994 0.05681 

Herbaceous - Oak/Hardwood Forest 6.6068 8.244x1010 

Herbaceous - Conifer Forest 6.3573 4.311x109 

Shrubland - Riparian/Wetland -5.8836 8.428x108 

Shrubland - Oak/Hardwood Forest -1.0979 1.0000 

Shrubland - Conifer Forest -1.0502 1.0000 

Riparian/Wetland - Oak/Hardwood Forest 6.0636 2.795x108 
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Riparian/Wetland - Conifer Forest 6.0258 3.534x108 

Oak/Hardwood Forest - Conifer Forest 0.0480 1.0000 

 

Section 3.2.4:  Distance to roads 

 

Table S.15.8 

Sample counts for paired test groups—the 

number of sites in road distance classes. 

Road distance classes n 

0-99m 184 

100-199m 131 

200-299m 94 

300-399m 68 

400-499m 64 

500-599m 44 

600-699m 21 

700-799m 25 

800-899m 25 

900-999m 20 

> 1000m 70 

 

Table S.15.9 

Kruskal-Wallis analysis tested significant distance 

differences to road groups (100m) daytime sound. 

Significant tests in bold (p < 0.05). 

Soundscape class Chi-square (χ2) p-value 

Anthropophony 48.543 4.939x107 

Biophony 16.5 0.08618 

Geophony 18.139 0.05267 

Quiet 46.521 1.154x106 
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Table S.15.10 

Dunn analyses testing significant differences of annual sound for 

significant Kruskal Wallis tests. Only significant pairs are shown and are 

bold (p-adj < 0.05). All values can be derived from 1_KWDunn_tests-

LULC_Roads_DateofDeploy.R in the code repository. 

Soundscape class Road pair z value p-adj value 

Anthropophony 0-99m & 400-499m -3.9048 0.005186 

0-99m & >1000m -5.0636 2.263x105 

100-199m & 400-499m -3.7069 0.01154 

100-199m & >1000m -4.7939 8.997x105 

Quiet 0-99m & 900-999m 3.7253 0.01073 

0-99m & >1000m 4.7566 0.0001083 

100-199m & >1000m 3.8575 0.006300 

 

 

S.16.  Computational efficiency 

The ABGQI-CNN took 4 hours to train on a laptop with an NVIDIA Quadro M1200 GPU and 16 

G.B. of RAM, and approximately 100 collective hours of ROI dataset generation. Inference was a 

function of the S2L dataset size and took approximately 250 hours of computing time, but was 

calculated on multiple computing nodes taking only 6 hours to complete. The model can be trained 

and deployed on a dataset similar to the S2L dataset in a single day with a small, labeled dataset. We 

estimate inference can be done on a single CPU with 2GB RAM at a rate of 200, 1-min recordings 

(each represented by 30, 2-s spectrograms) per hour.  

S.17.  ABGQI-CNN relative performance 

Table S.17.1 

Comparison of soundscape-component classification across select studies implementing CNN image classification 

or other methods. These include select studies from the environmental sound classification (ESC) field. We have 

used precision (Prec.) and recall (Rec.) as these metrics were most common in studies; other metrics reported when 

precision and recall were unavailable. nRMSE = normalized root mean square error; Acc. = n correct predictions / n 

incorrect predictions. 

Study Classification Method Anthropophony Biophony Geophony 

Quinn et al. (2022) 

This study. 

ABGQI-CNN with 

transfer learning and pre-

training (5 classes) 

Prec.=0.975 

Rec.=0.780 

Acc.=0.952 

Prec.=0.913 

Rec.=0.840 

Acc.=0.952 

Prec.=0.923 

Rec.=0.720 

Acc.=0.932 

Fairbrass et al. (2019) Custom CNNs for 

Anthropo- and Biophony 

(2, 1 class CNNs) 

Prec.=0.977 

Rec.=0.858 

Prec.=0.934 

Rec.=0.710 

NA 

NA 
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Mullet et al. (2016) Stochastic gradient 

boosting regression and 

spatial modeling (3 

classes) 

nRMSE=21% nRMSE=20% nRMSE=20% 

     

Salamon and Bello 

(2017) 

Custom CNN with data 

augmentation (10 

classes) 

Acc.=0.803±0.125 NA NA 

     

Piczak (2015) Custom CNN using 

multiple soundscape 

datasets and 

augmentation 

Acc.(ESC.50)=0.645, 

Acc.(UrbanSound8K)

=0.737 

 

NA NA 

Inik and Seker (2020) 

Table 3 summarizes 

ESC accuracies 

Grid-search of CNN 

parameters classifying 

UrbanSounds8k (10 

classes) 

Acc.=0.8245 NA NA 
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