Planned intervention: On Thursday March 28th 07:00 UTC Zenodo will be unavailable for up to 5 minutes to perform a database upgrade.
Published July 19, 2021 | Version v1
Poster Open

Transit Timing Variations for AU Microscopii b & c

  • 1. George Mason University
  • 2. Georg-August-Universität
  • 3. University of Chicago; University of Maryland; The Adler Planetarium; NASA Goddard Space Flight Center; GSFC Sellers Exoplanet Environments Collaboration
  • 4. University of Maryland; NASA Goddard Space Flight Center
  • 5. University of Bern
  • 6. University of New Mexico
  • 7. University of Kansas
  • 8. California Institute of Technology
  • 9. University of California, Santa Cruz
  • 10. University of Oxford
  • 11. Indiana University
  • 12. Dartmouth College
  • 13. University of Hawaiʻi at Mānoa
  • 14. University of California, Riverside
  • 15. Mississippi State University
  • 16. Planétarium Rio Tinto Alcan; Université de Montréal
  • 17. NASA Goddard Space Flight Center
  • 18. NASA Goddard Space Flight Center; Vanderbilt University
  • 19. Hobart and William Smith Colleges
  • 20. Vanderbilt University
  • 21. Universitá di Pisa
  • 22. CV Ventures LLC
  • 23. Perth Exoplanet Survey Telescope
  • 24. Brierfield Observatory
  • 25. Hazelwood Observatory

Contributors

Description

AU Mic is a relatively bright, nearby (9.7 pc), young (22 Myr) M1V pre-main sequence star hosting two transiting exoplanets AU Mic b and c and a spatially-resolved outer dusty debris disk. This research explores the transit timing variations (TTVs) of AU Mic b and c. For AU Mic b, we present three Spitzer/IRAC (4.5 μm) transits (two new), five TESS Cycle 1 and 3 transits, 11 LCO transits, one PEST-0.30m transit, one Brierfield-0.36m transit, and two transit timing measurements from Rossiter-McLaughlin observations; for AU Mic c, we present three TESS Cycle 1 and 3 transits. We use EXOFASTv2 to jointly model the transits and to obtain the midpoint transit times. We then construct an O-C diagram to map the TTVs. We model the TTVs for AU Mic b and c with Exo-Striker to recover constraints on the mass for AU Mic c. We compare the TTV-derived constraints to a recent radial-velocity mass determination. The results demonstrate that the AU Mic planetary system is dynamically interacting producing detectable TTVs, and the implied orbital dynamics may inform future constraints on the formation mechanisms for this young planetary system. However, stellar activity from flares and rotational spot modulation complicate our analysis of this young system. We recommend future TTV observations of AU Mic b and c to further constrain the dynamical masses and to search for additional planets in the system.

Files

AUMic_TTVs_Poster_TESS.pdf

Files (3.3 MB)

Name Size Download all
md5:e15b6fdff15fca00ea3e48afdcefc6ce
515.8 kB Preview Download
md5:77c3135b5c043d4b0521db13b02a6c6c
2.8 MB Preview Download

Additional details

References

  • Agol, E., Steffen, J., Sari, R., & Clarkson, W. 2005, MNRAS, 359, 567, doi: 10.1111/j.1365-2966.2005.08922.x
  • Akeson, R. L., Chen, X., Ciardi, D., et al. 2013, PASP, 125, 989, doi: 10.1086/672273
  • Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., Mantelet, G., & Andrae, R. 2018, AJ, 156, 58, doi: 10.3847/1538-3881/aacb21
  • Becker, J. C., Vanderburg, A., Adams, F. C., Rappaport, S. A., & Schwengeler, H. M. 2015, ApJL, 812, L18, doi: 10.1088/2041-8205/812/2/L18
  • Butler, C. J., Byrne, P. B., Andrews, A. D., & Doyle, J. G. 1981, MNRAS, 197, 815, doi: 10.1093/mnras/197.3.815
  • Cale, B., Reefe, M., Plavchan, P., et al. 2021, submitted
  • Collins, K. A., Kielkopf, J. F., Stassun, K. G., & Hessman, F. V. 2017, AJ, 153, 77, doi: 10.3847/1538-3881/153/2/77
  • Cully, S. L., Siegmund, O. H. W., Vedder, P. W., & Vallerga, J. V. 1993, ApJL, 414, L49, doi: 10.1086/186993
  • Eastman, J. D., Rodriguez, J. E., Agol, E., et al. 2019, arXiv e-prints, arXiv:1907.09480.https://arxiv.org/abs/1907.09480
  • Gilbert, E. A., Barclay, T., Quintana, E., et al. 2021, submitted
  • Gillon, M., Triaud, A. H. M. J., Demory, B.-O.,et al. 2017, Nature, 542, 456, doi: 10.1038/nature21360
  • Grimm, S. L., Demory, B.-O., Gillon, M., et al. 2018, A&A, 613, A68, doi: 10.1051/0004-6361/201732233
  • Holman, M. J., & Murray, N. W. 2005, Science, 307, 1288, doi: 10.1126/science.1107822
  • Kalas, P., Liu, M. C., & Matthews, B. C. 2004, Science, 303, 1990, doi: 10.1126/science.1093420
  • Kundu, M. R., Jackson, P. D., White, S. M., & Melozzi, M. 1987, ApJ, 312, 822, doi: 10.1086/164928
  • Mamajek, E. E., & Bell, C. P. M. 2014, MNRAS, 445, 2169, doi: 10.1093/mnras/stu1894
  • Martioli, E., Hébrard, G., Moutou, C., et al. 2020, A&A, 641, L1,doi: 10.1051/0004-6361/202038695
  • Mazeh, T., Nachmani, G., Holczer, T., et al. 2013, ApJS, 208, 16, doi: 10.1088/0067-0049/208/2/16
  • Palle, E., Oshagh, M., Casasayas-Barris, N., et al. 2020, A&A, 643, A25, doi: 10.1051/0004-6361/202038583
  • Plavchan, P., Barclay, T., Gagné, J., et al. 2020, Nature, 582, 497, doi: 10.1038/s41586-020-2400-z
  • Trifonov, T. 2019, The Exo-Striker: Transit and radial velocity interactive fitting tool for orbital analysis and N-body simulations. http://ascl.net/1906.004
  • Wittrock, J., Dreizler, S., Reefe, M., et al. 2021, in preparation