Transit Timing Variations for AU Microscopii b \& c

 Patrick Lowrance ${ }^{11}$, Peter Gao ${ }^{12}$, Laurel Kaye ${ }^{13}$, Songhu Wang ${ }^{14}$, Elisabeth R. Newton ${ }^{15}$, Eric Gaidos ${ }^{16}$, Bryson L. Cale ${ }^{10}$, Mohammed El Muftil, Kevin I. Collins ${ }^{10}$, Stephen R. Kane ${ }^{17}$, Angelle Tanner ${ }^{18}$, Jonathan Gagné ${ }^{19,20,}$ Elisa V. Quintana ${ }^{6}$, Laura D. Vega ${ }^{6,21}$, Joshua E. Schlieder ${ }^{6}$, Teresa Monsue ${ }^{6}$, Leslie Hebb ${ }^{22,}$, Keivan G. Stassun ${ }^{21}$, Veronica Roccatagliata ${ }^{23}$, Richard P. Schwarz ${ }^{24}$, T. G. Tan ${ }^{25}$, Don J. Radford ${ }^{26}$, Christopher

Abstract

 star hosting two transiting exoplanets AU Mic b and c and a spatially--esosolved outer
dusty debris disk. This research explores the transit timin variations (TTVS of AU Mic b dusty debris disk. This research explores the transit timing variations (TTV) of AU Mic b
and c. For AU Mic b, we present three Spiter/RAC (4.5 Hm) transits (iwo new), five TESS
 transit and two transit timing measurements from Rossiter-Mclaughlin observations:
for AU Mic c we present three TESS Cycle 1 and 3 transits. We use EXXOASTV2 to jointy

 to a recent radial-velocity mass determination. The resultits demonstrate that the AU Mic planetery ssytem is dynamically ynteracting producino detectable TTVE, and the implied
orbital dynamics mav inform future constraints on the formation mechanisms for this
 observations of AU Mic band c to further constrain the dynamical masses and to search for additional planets in the system.

Introduction

The transit iming variations (TTV) serves as a useful tool for probing stellar systems
for additional plonets (Holman \& Murray 2005; Agol et al. 2005; Mazeh et at. 2013; Tor adartional planets
Becker et al. 2015).
TTVS can place a limit on a planet's mass if the system is compact or the planets are
in orbitital resonance (Gillon et al 2017: Grimm et g al. 2018). in orbital resonance (Gillon et al. 2017; Grimm et al. 2018).

- AU Mic (TOI-2221) is a young (22 ± 3 Myl Mameiek $\& 2$ Bell 2014), nearby (9.7 pc Bailer-Jones et at. 2018) BY Draconis variable star with spectral type MIV and relative
briohtness V $=8.81$.
brightness $V=8.8 .8$.
 (Gelleet 2000).
- Au Michosts a debis disc (Kalala et al. 2004) between $50 \& 210$ au from the star and
two planets b (Plavchan et al. 2020) and C (Gibert et al. 2021) with periods of 8.46
 days and 18.86 days, respectively.
AU Mic is a unique, viable laboratory for studying the stellar activity of a young M
dwart the planetary formation, the evolution of exoplanet radii as a function of age, dwarf, the planetary formation, the evolution of exoplanet radii as a function of age,
orbital architectures of young giant planet systems, characteristics of young orbital architectures of young giant planet systems,
exoplanets, and the interplay between planets and disks.
We examine the transit timing variations (TTVS) of AU Mic using additional
observational data.
observational data.

Methodology

23 AU Mic b transits and 3 AU Mic ctransits have been included in the analysis.
 SplRou midpoint time fon
from Palle et al. (2020).

- The three Spitzer transits have been processed as described in Wittrock et al. (2021). The LCO SAAO \& SSO, Brierfied, and PEST conducted transit follow-ups of AU Mic b
as part of TESS Follow-up bsenving Prooram Working Group (TFOp WG: as Latr of TESS Follow-up Observing Program Working Group (TFOP WG;
https//tessmitedulfollowup), and their data became aveilable on ExoFPP TESS https//tess mitedu/followup), and their data became
(nttps// exofop:ipaccalitech edultess; Akeson et al. 2013).
-We utilized the Astroimagee (Collins et al. 2017) to create a subset table containing We utilized the Astrolmagel (Collins et al. 2017 to to create a a subset table containing
only BDD normalized filux, flux uncertainty, and detrending columns fiom the ground-
ond only BJD normaizer
based lightcurves.
- Next, we use EXOFASTV2 (Eastman et al. 2019) to perform joint-model of Spitzer and ground-based datasests and extract their midpoint times.
Atterward, we model the TTVs by incorporating the midpoint times into Ex- Striker
(Trifonov 2019). We attempt a 2 -planet model with various eccentrictites (circular, (Trifonov 2019). We attempt a 2 -planet mod
mild, and high) and a 3 -planet circular model.

Acknowledgements

Funding for the TESS mission is provided by NASAAs Science Mission directorate. This research has made use
of the Exoplanet Follow-up Observation Program wessite, which is operated by the Callifonia
Institute of Of the Exoplanet Follow-up Observation Program website, which is operated by the Califormia Insitite of
Technology, punder contract with the National AAronuutics and space Administration under the xopolanet
 Exploration Procram. This paper incudes a ala colie
the Mikulski Archive for Space Telescopes (MAST).

Discussion

The O-C diagram firam a complementary photodynamical analysis not presented here Wittrock et al. 2021) indicates that the derived transit times are sensitive to the methods employed for accounting for the stellar a ativity.
However, the analysis done by Gilbert et al. (2021) shows no dependence of transit
timing on activity after marginalizing over models for the flares and spot modulution. timing on activity atier marginalizing over models sor the fireses and spot moodilation. Spitrer data have greater photometric precision, are less impacted by stellar activity at
4.5 microns, and show significant deviations from a linear ephemenis than derived by 4.5 microns, and sho
the TESS data alone.

While our TTV analysis strongly suggests the existence of a third middle non-
 it possible that there is some unaccounted -for effect in the derived TTV uncertainties,
although we deem this scenaio unlikel given the above marginalization over our activity models.
Additional TTVs are needed to vet the possibility of the RV candidate highlighted in
Cale et al (2021) and to refine our portodynamical analysis sulch as would be be Cale et al. (2021), and to refine our photodynamical analysis, such as would be possible with
photometry.

- Additional ground and space-based observations of b and c transits may confirm or
- Auditional ground and space-obsed observaions of band c transits
rule out the third planet or the unaccounted for stellar activity efiects.

Parameter	Best-fit		MCMC	
	Planet b	Planet c	Planet b	Plane c
$K[\mathrm{~m} / \mathrm{s}]$	11.5318	7.2749	2.0544 ± 2.8155	61.2051 ± 6.7286
P [day	8.4627	18.8659		18.8803 ± 0.0017
	0.0238	0.0000	$0.0933 \pm \pm$ 0.0023	0.0119 ± 0.0
ω (deg]	90.1782	89.8116	101.3512 ± 2.471	202.3579 ± 25.5393
$M_{0}[$ des]	34.2866	126.828	333.9529 ± 2.168	12.2116 ± 25.6967
i [deg]	89.4501	90.417	88.813 ± 1.4315	92.3200 ± 1.6105
Ω deg]	0.0001	0.0003	$19.4066+21.647$	32.4073 ± 22.8235

Parameter	Planet b	Betffit	Planet d	Planet b	$\begin{array}{\|c} \text { MCMC } \\ \text { Planet } \end{array}$	Planet d
	10.3746	12.	1.644	19.7845 ± 10.6738	16.170	1.0770 ± 0.2822
	8.4634	18.8		± 0	$1 \pm$	12.9109 ± 0.0151
	${ }_{\text {O }}^{0.0076}$	${ }^{0.0000}$	${ }_{\text {a }}^{0}$	$0.0208 \pm \pm 0.0107$ 87.4843 7.259	0.0098 ± 0.012 $66.3204+15.09$	0.0020 ± 0.000 $7.053+13.0$
	344.1168	154.4539	100.587	34.0632 ± 7.5126	$151.288 \pm$	91.5890 ± 14.9975
i [deg]		89.306	78.89	89.493 ± 2.6218		76.
Ω (deg)	0.0000	0.0000	6.7383	6.2850 ± 10.3589	7.4988 ± 7.6058	12.7344 ± 7.990

References

 Anesin Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., Mantelet, G., \& Andrae, R. 2018, AJ, 156, 58, doi: 10.3847/1538- G., \& Andrae, R. 2018, AJ, 156, 58, doi: 10.3847/1538 3881/aacb21 \& Schwengeler, H. M. 2015, ApJL, 812, L18, doi: 10.1088/2041-8205/812/2/L18 Butle, C. J., Byrne, P. B., Andrews, A. D., \& Doyle, J. G. 1981, Cale, B., Reefe, M., Plavchan, P., et al. 2021, submitted Collins, K. A., Kielkopf, J. F., Stassun, K. G., \& Hessman, F. V. 2017, AJ, 153, 77, doi: 10.3847/1538-3881/153/2/77 Cully, S. L., Siegmund, O. H. W., Vedder, P. W., \& Vallerga, J. V. 1993, ApJL, 414, L49, doi: 10.1086/186993 prints, pastman, J. D., Rodriguez, J. E., Agol, E., et al. 2019, arXiv earXiv:1907.09480.https://arxiv.org/abs/1907.09480 Gilbert, E. A., Barclay, T., Quintana, E., et al. 2021, submitted lon, M., Triaud, A. H. M. J., Demory, B.-O.,et al. 2017, Nature, 542, 456, doi: 10.1038/nature21360	 Kundu, M. R., Jackson, P. D., White, S. M., \& Melozzi, M. 1987, ApJ, 312, 822, doi: 10.1086/164928 Mamajek, E. E., \& Bell, C. P. M. 2014, MNRAS, 445, 2169, Mzich Pale

