There is a newer version of the record available.

Published July 13, 2021 | Version 1.1
Dataset Open

Global River Water Quality Archive (GRQA)

  • 1. University of Tartu
  • 2. Yale University, School of the Environment
  • 3. Spatial-Ecology, Meaderville House, Wheal Buller, Redruth, TR16 6ST, UK

Description

A major problem related to large-scale water quality modeling has been the lack of available observation data with a good spatiotemporal coverage. This has affected the reproducibility of previous studies and the potential improvement of existing models. In addition to the observation data itself, insufficient or poor quality metadata has also discouraged researchers to integrate the already available datasets. Therefore, improving both the availability and quality of open water quality data woould increase the potential to implement predictive modeling on a global scale. We aim to address the aforementioned issues by presenting the new Global River Water Quality Archive (GRQA) by integrating data from five existing global and regional sources: Canadian Environmental Sustainability Indicators program (CESI), Global Freshwater Quality Database (GEMStat), GLObal RIver Chemistry database (GLORICH), European Environment Agency (Waterbase) and USGS Water Quality Portal (WQP). The resulting dataset covering the timeframe 1898 - 2020 contains a total of over 17 million observations for 42 different forms of some of the most important water quality parameters, focusing on nutrients, carbon, oxygen and sediments. Supplementary metadata and statistics are provided with the observation time series to improve the usability of the dataset.

An overview of all the files in the dataset can be found in README.txt.

Statistical overview of all 42 parameters is given in the data catalog file GRQA_data_catalog.pdf.

For more information about the development of this dataset look for Virro, H., Amatulli, G., Kmoch, A., Shen, L., and Uuemaa, E.: GRQA: Global River Water Quality Archive, Earth Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2021-51, in review, 2021.

Files

BOD5_GRQA.csv

Files (10.3 GB)

Name Size Download all
md5:767bc451ac9994826aa50bc0f883498d
111.9 MB Preview Download
md5:27193d0ba54cefa74439205fe521a94d
1.5 MB Preview Download
md5:eb64c12d6e4ed0c235d9d22392c08e95
323.8 MB Preview Download
md5:e02bb4cbe7354ec950b45d951999785b
104.9 MB Preview Download
md5:c0eac8ab51dcf7c72b6b543c5ce06844
2.2 MB Preview Download
md5:e0f04a8e638cd595bd6cf7ba2da34394
748.9 kB Preview Download
md5:e72cfcc86d76dbaeb2f8a5abda6afe80
4.0 kB Preview Download
md5:e90ca8283b3d52eeeee5ab48cad8849e
17.2 MB Preview Download
md5:3a0d33c8c625d1f20f994dcaafa3321f
2.8 MB Preview Download
md5:b789401f27341902b83d0f7ccde18e4d
240.6 MB Preview Download
md5:edf77bd8b1d62322c3d8400d06bac01b
35.6 MB Preview Download
md5:f762f114fafb9be897b5c09548cdcff6
634.8 MB Preview Download
md5:13131627fa718551fd2cb86a028a6277
175.0 MB Preview Download
md5:a03e70283da90b5f3ed65d203d1fb010
69.2 MB Preview Download
md5:9ec7a55a22d786c186ad13adac4ea46a
347.6 kB Preview Download
md5:2b425acb524a47e8f0d641d7216c9aba
415.6 MB Preview Download
md5:41ef24353adfaba4e415b637566d64e2
25.6 MB Preview Download
md5:0df338321e904c981dc1fb688a2ee10c
38.1 MB Preview Download
md5:429f4389db13477d8f1cbad1746b93f1
9.3 MB Preview Download
md5:b6a00fb5ea9c6a55fb7d84988debcb6d
3.0 GB Preview Download
md5:a3e812c29320c51422aed1089cf5e82d
255.8 MB Preview Download
md5:151dd5a1df6cf3e74dca4653b5ac8406
288.8 MB Preview Download
md5:5589d2a41e7bce907a98d20452ca4dd8
489.2 MB Preview Download
md5:4f755db5039d139f7460d32873ec1b16
19.6 MB Preview Download
md5:92730dbecae5ebb114e47320b54809aa
494.7 MB Preview Download
md5:360203e3717e9197fa8282c5b8f8f64f
3.9 MB Preview Download
md5:5bb77b3676d4fbed5864f792bd33eb22
23.3 MB Preview Download
md5:7c389cddf5fcf370129d8194757a5750
242.0 MB Preview Download
md5:0c24331c0901d8c14a32da659c20209b
587.1 kB Preview Download
md5:77872cc4a559fdbe54927814666fb497
5.5 kB Preview Download
md5:1697f7796e9ef7792243a0f14e71cf03
2.7 kB Preview Download
md5:6ed70fa9409be89bd6f77ac22ff084c1
280.7 MB Preview Download
md5:d6bd8c178a2f82b0edf0fea5451a1719
4.5 MB Preview Download
md5:e28c853e69827890f64d2cc0a098d249
29.8 MB Preview Download
md5:433c51da85bcc1e0b3d414d7d82883ee
88.0 MB Preview Download
md5:c15cef969283adb00bb75a302db10271
438.7 MB Preview Download
md5:3dab1f965684f7a2abf3db94e8521a5d
9.0 MB Preview Download
md5:542fe8640986e3047ac14b10c454f7cb
4.6 MB Preview Download
md5:f6d3bd546569c6dcc921fc1c5b232105
17.9 MB Preview Download
md5:5210246b2557e4e085eff6afcd629653
185.2 MB Preview Download
md5:ee469fdc5e9dd48abdfd34cb89098477
243.4 MB Preview Download
md5:ff9219e11f8d0fd46d31d15045285bf9
164.9 MB Preview Download
md5:ef0fd6f175638a9ed0852becf86ca1c2
236.3 MB Preview Download
md5:8a763ed4e3067a09161bb35dd589b045
713.9 kB Preview Download
md5:18041e5941bf3dcb96b490f1a7831a88
821.1 MB Preview Download
md5:4581974fdafc1e62e05728bffe0297d4
4.1 MB Preview Download
md5:6b89583b33cd49824200295532c39adb
726.0 MB Preview Download

Additional details

Funding

GLOMODAT – Enhancing data fusion, parallelisation for hydrological modelling and estimating sensitivity to spatial parameterization of SWAT to model nitrogen and phosphorus runoff at local and global scale 795625
European Commission