There is a newer version of the record available.

Published May 3, 2021 | Version 2
Preprint Open

Transformative resonant moderation of geomagnetic polarity and strata

Description

Claims of paleodata periodicity are many and controversial so that, for example, superimposing Phanerozoic (0–541 My) mass-extinction periods renders life on Earth impossible. This period hunt coincided with the modernization of geochronology which now ties geological timescales to orbital frequencies. Such tuneup simplifies energy-band (variance-) stratification of information contents, enabling separation of astronomical signal from any harmonics. Variance-based spectral analysis techniques can achieve this, such as the Gauss–Vaníček method favored by astronomers for resilience with even extreme data gaps. I thus show on diverse data (geomagnetic polarity, cratering, extinction episodes) that many-body subharmonic entrainment causes the Earth to respond to its astronomical forcing resonantly, so that the 2π-phase-shifted axial precession p=26 ky, and its Pi=2πp/i; i=1,…,n harmonics, are resonantly responsible for virtually all paleodata periods. This resonantly quasiperiodic nature of strata is shown co-triggered by the p'/4-lockstep to the p'=41-ky obliquity (also 2π-phase-shifted, to P'=3.5-My superperiod). For verification, residuals analysis after suppressing 2πp (and thus Pi, too) in the current polarity-reversals GPTS-95 timescale’s calibration extending to end-Campanian (0–83 My) successfully detected weak signals of Earth-Mars planetary resonances, reported previously from older epochs. The only significant intrinsic residual signal is 26.5-My Rampino period — carrier wave of crushing deflections that, during Transformative Resonant Events (TRE), decimate strata to quasiperiodicity — co-responsible for polarity reversals and whose detection confirms geomagnetism overall ergodicity. The (2πp, Pi) resonant response of the Earth to orbital forcing is the long-sought, energy-transfer mechanism of the Milankovitch theory — now a special case (applicable to the current episode) of Earth-Moon-Sun system resonant dynamics springing from the 1–40 My very long band. Fundamental system properties — 2π-phase-shift, ¼ lockstep to a forcer, and discrete time translation symmetry (multiplied or halved periods) — previously were thought typical of a discrete time crystal, which here then appears unremarkable.

Files

paper_repo2.pdf

Files (807.4 kB)

Name Size Download all
md5:a649d33980bde834dcef6c7f6b6015d8
807.4 kB Preview Download

Additional details

References

  • Bailer-Jones, C.A.L. (2009) The evidence for & against astronomical impacts on climate change & mass extinctions: a review. Int. J. Astrobiol. 8:213–219. https://doi.org/10.1017/S147355040999005X
  • Bajo, P., Drysdale, R.N., Woodhead, J.D., Hellstrom, J.C., Hodell, D., Ferretti, P., Voelker, A.H.L., Zanchetta, G., Rodrigues, T., Wolff, E., Tyler, J., Frisia, S., Spotl, C., Fallick, A.E. (2020) Persistent influence of obliquity on ice age terminations since the Middle Pleistocene transition. Science 367(6483):1235-1239. https://doi.org/10.1126/science.aaw1114
  • Baker, R.G., Flood, P.G. (2015) The Sun–Earth connect 3: lessons from the periodicities of deep time influencing sea-level change and marine extinctions in the geological record. SpringerPlus 4:285. https://doi.org/10.1186/s40064-015-0942-6
  • Barnes, B.D., Sclafani, J.A., Zaffos, A. (2021) Dead clades walking are a pervasive macroevolutionary pattern. Proc. Natl. Acad. Sci. (USA) 118(15):e2019208118. https://doi.org/10.1073/pnas.2019208118
  • Bassinot, F.C., Labeyrie, L.D., Vincent, E., Quidelleur, X., Shackleton, N.J., Lancelot, Y. (1994) The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal. Earth Planet. Sci. Lett. 126(1–3):91-108. https://doi.org/10.1016/0012-821X(94)90244-5
  • Berger, W.H. (2012) Milankovitch Theory - Hits and Misses. Milutin Milankovitch Medal Lecture at the EGU General Assembly, 22-27 April, Vienna, Austria. Retrieved from UC San Diego: Library – Scripps Digital Collection: https://escholarship.org/uc/item/95m6h5b9
  • Boulila, S., Galbrun, B., Laskar, J., Palike, H. (2012) A ~9myr cycle in Cenozoic δ13C record and long-term orbital eccentricity modulation: Is there a link? Earth Planet. Sci. Lett. 317–318:273–281. https://doi.org/10.1016/j.epsl.2011.11.017
  • Boulila, S., Laskar, J., Haq, B.U., Galbrun, B., Hara, N. (2018). Long-term cyclicities in Phanerozoic sea-level sedimentary record and their potential drivers. Global Planet. Change 165:128–136. https://doi.org/10.1016/j.gloplacha.2018.03.004
  • Boulila, S. (2019) Coupling between Grand cycles and Events in Earth's climate during the past 115 million years. Sci. Rep. 9:327. https://doi.org/10.1038/s41598-018-36509-7
  • Cande, S.C., Kent, D.V. (1992) A new geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. J. Geophys. Res. 97(B10):13917– 13951. https://doi.org/10.1029/92JB01202
  • Cande, S.C., Kent, D.V. (1995) Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J. Geophys. Res. 100(B4):6093–6095. https://doi.org/10.1029/94JB03098
  • Carbone V, Sorriso-Valvo L, Vecchio A, Lepreti F, Veltri P, Harabaglia P, Guerra I. (2006) Clustering of polarity reversals of the geomagnetic field. Phys. Rev. Lett. (Mar 31) 96(12):128501. PMID: 16605965. https://doi.org/10.1103/PhysRevLett.96.128501
  • Chang, H.-Y., Moon, H.-K. (2005) Time-series analysis of terrestrial impact crater records. Publ. Astron. Soc. Jpn. 57(3):487–495. https://doi.org/10.1093/pasj/57.3.487
  • De Santis, A., Qamili, E., Cianchini, G. (2011) Ergodicity of the recent geomagnetic field. Phys. Earth Planet. Inter. 186(3–4):103-110. https://doi.org/10.1016/j.pepi.2011.04.008
  • Den Hartog, J.P. (1985) Mechanical Vibrations. Dover Publications, New York, United States. ISBN 0486647854
  • Emiliani, C. (1955) Pleistocene Temperatures. J. Geol. 63(6):538-578. https://doi.org/10.1086/626295
  • Erlykin, A.D., Harper, D.A.T., Sloan, T., Wolfendale, A.W. (2017) Mass extinctions over the last 500 myr: an astronomical cause? Palaeontology 60:159–167. https://doi.org/10.1111/pala.12283
  • Erlykin, A.D., Harper, D.A.T., Sloan, T., Wolfendale, A.W. (2018) Periodicity in extinction rates. Palaeontology 61:149–158. https://doi.org/10.1111/pala.12334
  • Feng, F., Bailer-Jones, C.A.L. (2015) Obliquity and precession as pacemakers of Pleistocene deglaciations. Quat. Sci. Rev. 122:166-179. https://doi.org/10.1016/j.quascirev.2015.05.006
  • Gradstein, F.M., Ogg, J.G., Smith, A.G., Bleeker, W., Lourens, L.J. (2004) A new Geologic Time Scale, with special reference to Precambrian and Neogene. Contains parts of the Geologic Time Scale 2004. Episodes 27(2):83–100. https://doi.org/10.18814/epiiugs/2004/v27i2/002
  • Grippo, A., Fischer, A.G., Hinnov, L.A., Herbert, T.D., Premoli Silva, I. (2004) Cyclostratigraphy and chronology of the Albian stage (Piobbico core, Italy). In: D'Argenio, B., Fischer, A.G., Premoli Silva, I., Weissert, H., Ferreri, V. (Eds.) Cyclostratigraphy: Approaches and Case Histories. Society for Sedimentary Geology Special Publication 81:57–81. https://doi.org/10.2110/pec.04.81.0057
  • Guo, L., Marthaler, M., Schön, G. (2013) Phase Space Crystals: A New Way to Create a Quasienergy Band Structure. Phys. Rev. Lett. 111:205303. https://doi.org/10.1103/PhysRevLett.111.205303
  • Hays, J.D., Imbrie, J., Shackleton, N.J. (1976) Variations in the Earth's orbit: Pacemaker of the Ice Ages. Science 194:1121–1132. https://doi.org/10.1126/science.194.4270.1121
  • Hilgen, F.J. (1991) Extension of the astronomically calibrated (polarity) time scale to the Miocene/Pliocene boundary. Earth Planet. Sci. Lett. 107(2):349–368. https://doi.org/10.1016/0012-821X(91)90082-S
  • Hinnov, L.A. (2013) Cyclostratigraphy and its revolutionizing applications in the Earth and planetary sciences. GSA Bulletin 125(11–12):1703–1734. https://doi.org/10.1130/B30934.1
  • Hinnov, L.A. (2000) New Perspectives on Orbitally Forced Stratigraphy. Annu. Rev. Earth Planet. Sci. 28(1):419-475. https://doi.org/10.1146/annurev.earth.28.1.419
  • Hinnov, L.A., Ogg, J.G. (2007) Cyclostratigraphy and the astronomical time scale. Stratigraphy 4(2–3):239–251
  • Huang, C., Hinnov, L.A., Fischer, A.G., Grippo, A., Herbert, T. (2010) Astronomical tuning of the Aptian stage from Italian reference sections. Geology 38:899–902. https://doi.org/10.1130/G31177.1
  • Ikeda, M., Tada, R., Sakuma, H. (2010) Astronomical cycle origin of bedded chert; middle Triassic bedded chert sequence, Inuyama, Japan. Earth Planet. Sci. Lett. 297:369–378. https://doi.org/10.1016/j.epsl.2010.06.027
  • Ikeda, M., Tada, R. (2013) Long period astronomical cycles from the Triassic to Jurassic bedded chert sequence (Inuyama, Japan); geologic evidences for the chaotic behavior of solar planets: Earth Planets Space 65:351–360. https://doi.org/10.5047/eps.2012.09.004
  • IUGS (1967) A comparative table of recently published geological time-scales for the Phanerozoic time-explanatory notice. International Union of Geological Sciences – Commission on Geochronology for coordination of radiometric and stratigraphic data in the development of a world time-scale. Nor. J. Geol. 47(4):375–380
  • Liu, H.S. (1992) Frequency variations of the Earth's obliquity and the 100-kyr ice-age cycles. Nature 358:397–399. https://doi.org/10.1038/358397a0
  • Lutz, T. (1985) The magnetic reversal record is not periodic. Nature 317:404–407. https://doi.org/10.1038/317404a0
  • Martinez, M., Dera, G. (2015) Grand astronomical cycles and their consequences. Proc. Natl. Acad. Sci. (USA) 112(41):12604–12609. https://doi.org/10.1073/pnas.1419946112
  • Meier, M.M.M., Holm–Alwmark, S. (2017) A tale of clusters: no resolvable periodicity in the terrestrial impact cratering record. Mon. Not. R. Astron. Soc. 467(3):2545–2551. https://doi.org/10.1093/mnras/stx211
  • Milankovitch, M. (1941) Canon of Insolation and the Ice-age Problem. Königlich Serbische Akademie. Reprint: Zavod za udžbenike i nastavna sredstva, Belgrade, 1998, pp.634. ISBN 8617066199
  • Naish, T., Powell, R., Levy, R. et al. (2009) Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature 458:322–328. https://doi.org/10.1038/nature07867
  • Newman, M.E.J., Sibani, P. (1999) Extinction, diversity and survivorship of taxa in the fossil record. Proc. R. Soc. Lond. B. 266:1593–1599. https://doi.org/10.1098/rspb.1999.0820
  • Olsen, P.E. (2010) Fossil Great Lakes of the Newark Supergroup—30 years later. In: Benimoff, A.I. (Ed.) 83nd Annual Meeting Field Trip Guidebook: New York. New York State Geological Association, College of Staten Island, p. 101–162.
  • Olsen, P.E. (1986) A 40-Million-Year Lake Record of Early Mesozoic Orbital Climatic Forcing. Science 234(4778):842–848. https://doi.org/10.1126/science.234.4778.842
  • Olsen, P.E., Kent, D.V. (1999) Long-period Milankovitch cycles from the Late Triassic and Early Jurassic of eastern North America and their implications for the calibration of the Early Mesozoic time–scale and the long–term behaviour of the planets. Phil. Trans. R. Soc. A.3571761–1786. https://doi.org/10.1098/rsta.1999.0400
  • Omerbashich, M. (2021a) Detection and mapping of Earth body resonances from cGPS. In press. https://doi.org/10.5281/zenodo.4678317
  • Omerbashich, M. (2021b) Non-marine tetrapod extinctions solve extinction periodicity mystery. Hist. Biol. 34 (29 March). https://doi.org/10.1080/08912963.2021.1907367
  • Omerbashich, M. (2020a) Moon body resonance. J. Geophys. 63:30–42. https://n2t.net/ark:/88439/x034508
  • Omerbashich, M. (2020b) Earth body resonance. J. Geophys. 63:15–29. https://n2t.net/ark:/88439/x020219
  • Omerbashich, M. (2007a) Magnification of mantle resonance as a cause of tectonics. Geod. Acta 20(6):369–383. https://doi.org/10.3166/ga.20.369-383
  • Omerbashich, M. (2007b) Erratum due to journal error. Comp. Sci. Eng. 9(4):5–6. https://doi.org/10.1109/MCSE.2007.79; full text: https://arxiv.org/abs/math-ph/0608014
  • Omerbashich, M. (2006) Gauss–Vaníček Spectral Analysis of the Sepkoski Compendium: No New Life Cycles. Comp. Sci. Eng. 8(4):26–30. https://doi.org/10.1109/MCSE.2006.68
  • Omerbashich, M. (2003) Earth-Model Discrimination Method. Ph.D. Dissertation, University of New Brunswick, Canada, pp.129. Library and Archives Canada & ProQuest, ISBN 9780494068793. https://doi.org/10.6084/m9.figshare.12847304.v1
  • Pagiatakis, S. (1999) Stochastic significance of peaks in the least-squares spectrum. J. Geod. 73:67–78. https://doi.org/10.1007/s001900050220
  • Pétrélis, F., Besse, J., Valet, J.‐P. (2011) Plate tectonics may control geomagnetic reversal frequency. Geophys. Res. Lett. 38:L19303. https://doi.org/10.1029/2011GL048784
  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P. (2007) Numerical Recipes: The Art of Scientific Computing (3rd Ed.). Cambridge University Press, United Kingdom. ISBN 9780521880688
  • Prokoph, A., Puetz, S.J. (2015) Period-Tripling and Fractal Features in Multi-Billion Year Geological Records. Math. Geosci. 47:501–520. https://doi.org/10.1007/s11004-015-9593-y
  • Puetz, S.J., Prokoph, A., Borchardt, G. (2016) Evaluating alternatives to the Milankovitch theory. J. Statist. Plann. Inference 170:158-165. https://doi.org/10.1016/j.jspi.2015.10.006
  • Puetz, S.J., Prokoph, A., Borchardt, G., Mason, E.W. (2014) Evidence of synchronous, decadal to billion year cycles in geological, genetic, and astronomical events. Chaos Solitons Fractals 62–63:Pages 55-75. https://doi.org/10.1016/j.chaos.2014.04.001
  • Rampino, M.R., Caldeira, K. (2015) Periodic impact cratering and extinction events over the last 260 million years. Mon. Not. R. Astron. Soc. 454(4):3480–3484. https://doi.org/10.1093/mnras/stv2088
  • Rampino, M.R., Caldeira, K., Zhu, Y. (2020) A 27.5-My underlying periodicity detected in extinction episodes of non-marine tetrapods, Hist. Biol. https://doi.org/10.1080/08912963.2020.1849178
  • Rampino, M.R., Prokoph, A. (2020) Are Impact Craters and Extinction Episodes Periodic? Implications for Planetary Science and Astrobiology. Astrobiology 20(9):1097-1108. https://doi.org/10.1089/ast.2019.2043
  • Raup, D. (1985) Magnetic reversals and mass extinctions. Nature 314:341–343. https://doi.org/10.1038/314341a0
  • Raup, D.M., Sepkoski, Jr., J.J., Jr. (1984) Periodicity of extinctions in the geologic past. Proc. Natl. Acad. Sci. (USA) 81(3):801-805. https://doi.org/10.1073/pnas.81.3.801
  • Rial, J., Oh, J., Reischmann, E. (2013) Synchronization of the climate system to eccentricity forcing and the 100,000-year problem. Nature Geosci. 6:289–293. https://doi.org/10.1038/ngeo1756
  • Rohde, R., Muller, R. (2005) Cycles in fossil diversity. Nature 434:208–210. https://doi.org/10.1038/nature03339
  • Seidelmann, P. (1992) Explanatory Supplement to the Astronomical Almanac. A revision to the Explanatory Supplement to the Astronomical Ephemeris and the American Ephemeris and Nautical Almanac. University Science Books, Mill Valley, CA, United States. ISBN 0935702687
  • Shackleton, N., Berger, A., Peltier, W. (1990) An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677. Earth Environ. Sci. Trans. R. Soc. Edinb. 81(4):251–261. http://doi.org/10.1017/S0263593300020782
  • Smith, A.B. (2007) Marine diversity through the Phanerozoic: problems and prospects. (Bicentennial Review.) J. Geol. Soc. 164(4):731–745. https://doi.org/10.1144/0016/76492006-184
  • Strogatz, S.H. (2000) Nonlinear Dynamics And Chaos: With Applications To Physics, Biology, Chemistry, And Engineering (Studies in Nonlinearity). CRC Press, United States, 512 pp. ISBN 0738204536
  • Svensson, I.-M., Bengtsson, A., Bylander, J., Shumeiko, V., Delsing, P. (2018) Period multiplication in a parametrically driven superconducting resonator. Appl. Phys. Lett. 113:022602. https://doi.org/10.1063/1.5026974
  • Tanner L.H., Lucas S.G. (2014) Limitations of the Astronomically Tuned Timescale: A Case Study from the Newark Basin. In: Rocha R., Pais J., Kullberg J., Finney S. (eds) STRATI 2013, 1st International Congress on Stratigraphy: At the Cutting Edge of Stratigraphy. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-04364-7_44
  • Taylor, J., Hamilton, S. (1972) Some tests of the Vaníček Method of spectral analysis. Astrophys. Space Sci. 17:357–367. https://doi.org/10.1007/BF00642907
  • Uyeda, J.C., Hansen, T.F., Arnold, S.J., Pienaar, J. (2011) The million-year wait for macroevolutionary bursts. Proc. Natl. Acad. Sci. (USA) 108(38):15908-15913. https://doi.org/10.1073/pnas.1014503108
  • Vaníček, P. (1969) Approximate Spectral Analysis by Least-Squares Fit. Astrophys. Space Sci. 4(4):387–391. https://doi.org/10.1007/BF00651344
  • Vaníček, P. (1971) Further Development and Properties of the Spectral Analysis by Least-Squares Fit. Astrophys. Space Sci. 12(1):10–33. DOI: https://doi.org/10.1007/BF00656134
  • Wells, D.E., Vaníček, P., Pagiatakis, S. (1985) Least squares spectral analysis revisited. Department of Geodesy & Geomatics Engineering Technical Report 84, University of New Brunswick, Canada. Link: http://www2.unb.ca/gge/Pubs/TR84.pdf
  • Westerhold, T., Rohl, U., Laskar, J. (2012) Time scale controversy: Accurate orbital calibration of the early Paleogene. Geochem. Geophys. Geosyst. 13:Q06015. https://doi.org/10.1029/2012GC004096
  • Westerhold, T., Rohl, U., Frederichs, T., Bohaty, S.M., Zachos, J.C. (2015) Astronomical calibration of the geological timescale: closing the middle Eocene gap. Clim. Past 11(9):1181–1195. https://doi.org/10.5194/cp-11-1181-2015
  • Wu, H., Zhang, S., Hinnov, L.A., Feng, Q., Jiang, G., Li, H., Yang, T. (2013) Late Permian Milankovitch cycles: Nat. Commun. 4:2452. https://doi.org/10.1038/ncomms3452
  • Yao, N.Y., Nayak, C., Balents, L., Zaletel, M.P. (2020) Classical discrete time crystals. Nat. Phys. 16:438–447. https://doi.org/10.1038/s41567-019-0782-3
  • Yao, N.Y., Nayak, C. (2018) Time crystals in periodically driven systems. Physics Today 71:40-47. https://doi.org/10.1063/PT.3.4020