Planned intervention: On Thursday 19/09 between 05:30-06:30 (UTC), Zenodo will be unavailable because of a scheduled upgrade in our storage cluster.
Published September 7, 2023 | Version 5 (arxiv v.3)
Preprint Open

Earth as a time crystal: macroscopic nature of a quantum-scale phenomenon exposes quantum physics as tidally-resonantly localized to host star

  • 1. Geophysics Online

Description

Claims of mass-extinction periodicity are many and so controversial that superimposing such published Phanerozoic (0-541 My) periods renders life on Earth impossible. This hunt for evidence of life recurrence coincided with geochronology modernization, tying geological timescales to orbital frequencies, which enabled the separation of astronomical signals from any harmonics. I then use Shannon’s theory-based Gauss-Vaniček spectral analysis as one such separation technique on diverse data (geomagnetic polarity, cratering, extinction episodes) as a proxy of planetary paleodynamics to show that many-body subharmonic entrainment induces planetary resonant response to astronomical forcing, such that the 2π-phase-shifted axial precession p=26 ky and its Pi=2πp/i; i=1,…,n harmonics are resonantly responsible for the paleodata periodicity. This quasiperiodic nature of strata is co-triggered by a p'/4-lockstep to p'=41-ky obliquity. For verification, the analysis of residuals after suppressing 2πp (and so Pi) in the GPTS-95 timescale calibration of reversals at the South Atlantic Anomaly, extending to end-Campanian (0-83 My), successfully detected weak signals of Earth-Mars planetary resonances reported previously from older epochs. The only residual signal is 26.5-My Rampino period — the carrier wave of crushing deflections and transformative polarity reversals. While the Earth resonant response (2πp, Pi) to orbital forcing is the long-sought energy transfer mechanism of the Milankovitch theory, fundamental system properties — 2π-phase-shift, ¼ lockstep to a forcer, and discrete time translation symmetry (multiplied/halved periods) — typical of a quantum time crystal, emerge macroscopic. The surprising cross-scale outcome confirms previous claims that planetary precession is a cataclysmic geodynamic phenomenon, proposed previously as the mechanism for the reversals and Earth’s expansion. As the Earth-Moon-Sun resonant system sets the tone for all subscale resonances like the quantum, quantum physics in any interpretation is fundamentally different and variable outside Earth’s vicinity.

Notes

HIGHLIGHTS
• Quantum physics is a localized manifestation of higher-order tidal resonance constrained by host stellar systems
• Thus fundamentals of quantum physics vary significantly from one stellar/planetary system to another
• Earth-Moon-Sun as a measure-preserving dynamical system exposes Earth as 1st macroscopic time crystal found
• First direct (computational) evidence of a fundamental relation between macroscopic and quantum dynamics
• Time crystal is formed by many-body entrainment whose precession resonance moderates (geo)magnetic polarity
• The 26.5-My Rampino period isolated as the carrier wave of geomagnetic polarity reversals and strata decimation
• Milankovitch theory of climate change now gets its long-sought, orbit-downward energy transfer mechanism
• Hotly debated geological theory of expanding Earth, dismissed over the lack of mechanism, now appears credible
• First application of Shannon's theory-based Gauss-Vaniček Spectral Analysis (GVSA) in global paleogeodynamics
• GVSA revolutionizes physics by computing nonlinear global dynamics directly (obsoletes classical approximations).

Files

paper_repo5_arxiv_v3.pdf

Files (1.1 MB)

Name Size Download all
md5:8370f3e393bd1b3ae8bc473973a4a115
1.1 MB Preview Download

Additional details

References

  • Bailer-Jones, C.A.L., 2009. The evidence for & against astronomical impacts on climate change & mass extinctions: a review. Int. J. Astrobiol. 8, 213–219. https://doi.org/10.1017/S147355040999005X
  • Bajo, P., Drysdale, R.N., Woodhead, J.D., Hellstrom, J.C., Hodell, D., Ferretti, P., Voelker, A.H.L., Zanchetta, G., Rodrigues, T., Wolff, E., Tyler, J., Frisia, S., Spotl, C., Fallick, A.E., 2020. Persistent influence of obliquity on ice age terminations since the Middle Pleistocene transition. Science 3676483, 1235-1239. https://doi.org/10.1126/science.aaw1114
  • Baker, R.G., Flood, P.G., 2015. The Sun–Earth connect 3: lessons from the periodicities of deep time influencing sea-level change and marine extinctions in the geological record. SpringerPlus 4, 285. https://doi.org/10.1186/s40064-015-0942-6
  • Barnes, B.D., Sclafani, J.A., Zaffos, A., 2021. Dead clades walking are a pervasive macroevolutionary pattern. Proc. Natl. Acad. Sci. U.S.A. 11815, e2019208118. https://doi.org/10.1073/pnas.2019208118
  • Bassinot, F.C., Labeyrie, L.D., Vincent, E., Quidelleur, X., Shackleton, N.J., Lancelot, Y., 1994. The astronomical theory of climate and the age of the Brunhes-Matuyama magnetic reversal. Earth Planet. Sci. Lett. 1261–3., 91-108. https://doi.org/10.1016/0012-821X94.90244-5
  • Berger, W.H., 2012. Milankovitch Theory - Hits and Misses. Milutin Milankovitch Medal Lecture at the EGU General Assembly, 22-27 April, Vienna, Austria. Retrieved from UC San Diego: Library – Scripps Digital Collection, https://escholarship.org/uc/item/95m6h5b9
  • Boulila, S., Haq, B.U., Hara, N., Müller, R.D., Galbrun, B., Charbonnier, G., 2021. Potential encoding of coupling between Milankovitch forcing and Earth's interior processes in the Phanerozoic eustatic sea-level record. Earth Sci. Rev. 220:103727. https://doi.org/10.1016/j.earscirev.2021.103727
  • Boulila, S., 2019. Coupling between Grand cycles and Events in Earth's climate during the past 115 million years. Sci. Rep. 9, 327. https://doi.org/10.1038/s41598-018-36509-7
  • Boulila, S., Laskar, J., Haq, B.U., Galbrun, B., Hara, N., 2018. Long-term cyclicities in Phanerozoic sea-level sedimentary record and their potential drivers. Global Planet. Change 165, 128–136. https://doi.org/10.1016/j.gloplacha.2018.03.004
  • Boulila, S., Galbrun, B., Laskar, J., Palike, H., 2012. A ~9myr cycle in Cenozoic δ13C record and long-term orbital eccentricity modulation: Is there a link? Earth Planet. Sci. Lett. 317–318, 273–281. https://doi.org/10.1016/j.epsl.2011.11.017
  • Boulila, S., Galbrun, B., Miller, K.G., Pekar, S.F., Browning, J.V., Laskar, J., Wright, J.D., 2011. On the origin of Cenozoic and Mesozoic "third-order" eustatic sequences. Earth-Sci. Rev. 109, 94–112. https://doi.org/10.1016/j.earscirev.2011.09.003
  • Cande, S.C., Kent, D.V., 1992. A new geomagnetic polarity time scale for the Late Cretaceous and Cenozoic. J. Geophys. Res. 97B10, 13917– 13951. https://doi.org/10.1029/92JB01202
  • Cande, S.C., Kent, D.V., 1995. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J. Geophys. Res. 100B4, 6093–6095. https://doi.org/10.1029/94JB03098
  • Carbone, V., Sorriso-Valvo, L., Vecchio, A., Lepreti, F., Veltri, P., Harabaglia, P., Guerra, I., 2006. Clustering of polarity reversals of the geomagnetic field. Phys. Rev. Lett. Mar 31. 9612, 128501. PMID: 16605965. https://doi.org/10.1103/PhysRevLett.96.128501
  • Chang, H.-Y., Moon, H.-K., 2005. Time-series analysis of terrestrial impact crater records. Publ. Astron. Soc. Jpn. 573, 487–495. https://doi.org/10.1093/pasj/57.3.487
  • Craymer, M.R., 1998. The Least Squares Spectrum, Its Inverse Transform and Autocorrelation Function: Theory and Some Applications in Geodesy. Ph.D. Dissertation, University of Toronto, Canada. URI: https://hdl.handle.net/1807/12263
  • De Santis, A., Qamili, E., Cianchini, G., 2011. Ergodicity of the recent geomagnetic field. Phys. Earth Planet. Inter. 1863–4., 103-110. https://doi.org/10.1016/j.pepi.2011.04.008
  • Den Hartog, J.P., 1985. Mechanical Vibrations. Dover Publications, New York, United States. ISBN 0486647854
  • Emiliani, C., 1955. Pleistocene Temperatures. J. Geol. 636, 538-578. https://doi.org/10.1086/626295
  • Erlykin, A.D., Harper, D.A.T., Sloan, T., Wolfendale, A.W., 2017. Mass extinctions over the last 500 myr: an astronomical cause? Palaeontology 60, 159–167. https://doi.org/10.1111/pala.12283
  • Erlykin, A.D., Harper, D.A.T., Sloan, T., Wolfendale, A.W., 2018. Periodicity in extinction rates. Palaeontology 61, 149–158. https://doi.org/10.1111/pala.12334
  • Feng, F., Bailer-Jones, C.A.L., 2015. Obliquity and precession as pacemakers of Pleistocene deglaciations. Quat. Sci. Rev. 122, 166-179. https://doi.org/10.1016/j.quascirev.2015.05.006
  • Giesecke, A., Vogt, T., Gundrum, T., Stefani, F., 2019. Kinematic dynamo action of a precession-driven flow based on the results of water experiments and hydrodynamic simulations. Geophys. Astrophys. Fluid Dyn. 1131-2., 235-255. https://doi.org/10.1080/03091929.2018.1506774
  • Gradstein, F.M., Ogg, J.G., Smith, A.G., Bleeker, W., Lourens, L.J., 2004. A new Geologic Time Scale, with special reference to Precambrian and Neogene. Contains parts of the Geologic Time Scale 2004. Episodes 272, 83–100. https://doi.org/10.18814/epiiugs/2004/v27i2/002
  • Grippo, A., Fischer, A.G., Hinnov, L.A., Herbert, T.D., Premoli Silva, I., 2004. Cyclostratigraphy and chronology of the Albian stage Piobbico core, Italy. In: D'Argenio, B., Fischer, A.G., Premoli Silva, I., Weissert, H., Ferreri, V. (Eds.). Cyclostratigraphy: Approaches and Case Histories. Society for Sedimentary Geology Special Publication 81, 57–81. https://doi.org/10.2110/pec.04.81.0057
  • Guo, L., Marthaler, M., Schön, G., 2013. Phase Space Crystals: A New Way to Create a Quasienergy Band Structure. Phys. Rev. Lett. 111, 205303. https://doi.org/10.1103/PhysRevLett.111.205303
  • Hays, J.D., Imbrie, J., Shackleton, N.J., 1976. Variations in the Earth's orbit: Pacemaker of the Ice Ages. Science 194, 1121–1132. https://doi.org/10.1126/science.194.4270.1121
  • Hilgen, F.J., 1991. Extension of the astronomically calibrated polarity: time scale to the Miocene/Pliocene boundary. Earth Planet. Sci. Lett. 1072, 349–368. https://doi.org/10.1016/0012-821X91.90082-S
  • Hinnov, L.A., 2000. New Perspectives on Orbitally Forced Stratigraphy. Annu. Rev. Earth Planet. Sci. 281, 419-475. https://doi.org/10.1146/annurev.earth.28.1.419
  • Hinnov, L.A., 2013. Cyclostratigraphy and its revolutionizing applications in the Earth and planetary sciences. GSA Bulletin 12511–12., 1703–1734. https://doi.org/10.1130/B30934.1
  • Hinnov, L.A., Ogg, J.G., 2007. Cyclostratigraphy and the astronomical time scale. Stratigraphy 42–3., 239–251
  • Hoyng, P., Duistermaat, J.J., 2004. Geomagnetic reversals and the stochastic exit problem. Europhys. Lett. 682, 177-183. https://doi.org/10.1209/epl/i2004-10243-1
  • Huang, C., Hinnov, L.A., Fischer, A.G., Grippo, A., Herbert, T., 2010. Astronomical tuning of the Aptian stage from Italian reference sections. Geology 38, 899–902. https://doi.org/10.1130/G31177.1
  • Ikeda, M., Tada, R., 2013. Long period astronomical cycles from the Triassic to Jurassic bedded chert sequence Inuyama, Japan; geo-logic evidences for the chaotic behavior of solar planets, Earth Planets Space 65, 351–360. https://doi.org/10.5047/eps.2012.09.004
  • Ikeda, M., Tada, R., Sakuma, H., 2010. Astronomical cycle origin of bedded chert; middle Triassic bedded chert sequence, Inuyama, Japan. Earth Planet. Sci. Lett. 297, 369–378. https://doi.org/10.1016/j.epsl.2010.06.027
  • IUGS, 1967. A comparative table of recently published geological time-scales for the Phanerozoic time-explanatory notice. Interna-tional Union of Geological Sciences – Commission on Geochronology for coordination of radiometric and stratigraphic data in the development of a world time-scale. Nor. J. Geol. 474, 375–380
  • Kinkhabwala, A., 2013. Maximum Fidelity. Max Planck Institute of Molecular Physiology report. arXiv, https://doi.org/10.48550/arXiv.1301.5186
  • Lasser, J., 2019. Geophysical Pattern Formation of Salt Playa. Ph.D. dissertation, Division of Mathematics and Natural Sciences, University of Gottingen, Germany, pp. 200. http, //hdl.handle.net/11858/00-1735-0000-002E-E5DB-2
  • Liu, H.S., 1992. Frequency variations of the Earth's obliquity and the 100-kyr ice-age cycles. Nature 358, 397–399. https://doi.org/10.1038/358397a0
  • Lutz, T., 1985. The magnetic reversal record is not periodic. Nature 317, 404–407. https://doi.org/10.1038/317404a0
  • Martinez, M., Dera, G., 2015. Grand astronomical cycles and their consequences. Proc. Natl. Acad. Sci. U.S.A. 11241, 12604–12609. https://doi.org/10.1073/pnas.1419946112
  • Maxlow, J., 2021. Beyond Plate Tectonics. Terrella Press, 452 pp. ISBN‎ 9780992565213
  • Meier, M.M.M., Holm–Alwmark, S., 2017. A tale of clusters: no resolvable periodicity in the terrestrial impact cratering record. Mon. Not. R. Astron. Soc. 4673, 2545–2551. https://doi.org/10.1093/mnras/stx211
  • Milankovitch, M., 1941. Canon of Insolation and the Ice-age Problem. Königlich Serbische Akademie. Reprint. Zavod za udžbenike i nastavna sredstva, Belgrade, 1998, pp.634. ISBN 8617066199
  • Miller, K.G., Kominz, M.A., Browning, J.V., Wright, J.D., Mountain, G.S., Katz, M.E., Sugarman, P.J., Cramer, B.S., Christie-Blick, N., Pekar, S., 2005. The Phanerozoic record of global sea level change. Science 310, 1293–1298. https://doi.org/10.1126/science.1116412
  • Naish, T., Powell, R., Levy, R. et al., 2009. Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature 458, 322–328. https://doi.org/10.1038/nature07867
  • Newman, M.E.J., Sibani, P., 1999. Extinction, diversity and survivorship of taxa in the fossil record. Proc. R. Soc. Lond. B. 266, 1593–1599. https://doi.org/10.1098/rspb.1999.0820
  • Nickolaenko, A.P., Hayakawa, M., 2002. Resonances in the Earth-Ionosphere Cavity. Modern Approaches in Geophysics 19, ISSN 0924-6096. Springer Science & Business Media. ISBN 140200754X, pp.380
  • Nilsson, A., Muscheler, R., 2022. Recurrent ancient geomagnetic field anomalies shed light on future evolution of the South Atlantic Anomaly. Proc. Natl. Acad. Sci. U.S.A. 119(24)e2200749119. https://doi.org/10.1073/pnas.2200749119
  • Olsen, P.E., 2010. Fossil Great Lakes of the Newark Supergroup—30 years later. In: Benimoff, A.I. Ed. 83rd Annual Meeting Field Trip Guidebook, New York. New York State Geological Association, College of Staten Island, p. 101–162
  • Olsen, P.E., 1986. A 40-Million-Year Lake Record of Early Mesozoic Orbital Climatic Forcing. Science 2344778, 842–848. https://doi.org/10.1126/science.234.4778.842
  • Olsen, P.E., Kent, D.V., 1999. Long-period Milankovitch cycles from the Late Triassic and Early Jurassic of eastern North America and their implications for the calibration of the Early Mesozoic time–scale and the long–term behaviour of the planets. Phil. Trans. R. Soc. A.3571761–1786. https://doi.org/10.1098/rsta.1999.0400
  • Omerbashich, M., 2023a. Global coupling mechanism of Sun resonant forcing of Mars, Moon, and Earth seismicity. J. Geoph. 65(1), 1–46. https://n2t.net/ark:/88439/x040901 (preprint: arXiv:2301.10800, Subject: Earth and Planetary Astrophysics (astro-ph.EP). https://arxiv.org/abs/2301.10800)
  • Omerbashich, M., 2023b. First total extraction of global decadal Alfven vibration of the Sun (resonance and antiresonance) exposes solar-type stars as revolving-field multipart magnetoalternators instead of elusive dynamos. arXiv:2301.07219, Subject: Solar and Stellar Astrophysics (astro-ph.SR). https://doi.org/10.48550/arXiv.2301.07219
  • Omerbashich, M., 2022. Detection and mapping of Earth body resonances with continuous GPS. J. Geophys. 641, 12-33. https://n2t.net//88439/x073994
  • Omerbashich, M., 2021. Non-marine tetrapod extinctions solve extinction periodicity mystery. Hist. Biol. 341, 188-191. https://doi.org/10.1080/08912963.2021.1907367
  • Omerbashich, M., 2020a. Moon body resonance. J. Geophys. 63, 30–42. https://n2t.net//88439/x034508
  • Omerbashich, M., 2020b. Earth body resonance. J. Geophys. 63, 15–29. https://n2t.net//88439/x020219
  • Omerbashich, M., 2007a. Magnification of mantle resonance as a cause of tectonics. Geod. Acta 206, 369–383. https://doi.org/10.3166/ga.20.369-383
  • Omerbashich, M., 2007b. Erratum due to journal error. Comp. Sci. Eng. 94, 5–6. https://doi.org/10.1109/MCSE.2007.79; full text, https://arxiv.org/abs/math-ph/0608014
  • Omerbashich, M., 2006. Gauss–Vaníček Spectral Analysis of the Sepkoski Compendium: No New Life Cycles. Comp. Sci. Eng. 84, 26–30. https://doi.org/10.1109/MCSE.2006.68
  • Omerbashich, M., 2003. Earth-Model Discrimination Method. Ph.D. Dissertation, University of New Brunswick, Canada, pp.129. Library and Archives Canada & ProQuest, ISBN 9780494068793. https://doi.org/10.6084/m9.figshare.12847304.v1
  • Pagiatakis, S., 1999. Stochastic significance of peaks in the least-squares spectrum. J. Geod. 73, 67–78. https://doi.org/10.1007/s001900050220
  • Pétrélis, F., Besse, J., Valet, J.‐P., 2011. Plate tectonics may control geomagnetic reversal frequency. Geophys. Res. Lett. 38, L19303. https://doi.org/10.1029/2011GL048784
  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P., 2007. Numerical Recipes: The Art of Scientific Computing 3rd Ed., Cambridge University Press, United Kingdom. ISBN 9780521880688
  • Prokoph, A., Puetz, S.J., 2015. Period-tripling and fractal features in multi-billion year geological records. Math. Geosci. 47, 501–520. https://doi.org/10.1007/s11004-015-9593-y
  • Puetz, S.J., Prokoph, A., Borchardt, G., 2016. Evaluating alternatives to the Milankovitch theory. J. Statist. Plann. Inference 170, 158-165. https://doi.org/10.1016/j.jspi.2015.10.006
  • Puetz, S.J., Prokoph, A., Borchardt, G., Mason, E.W., 2014. Evidence of synchronous, decadal to billion year cycles in geological, genetic, and astronomical events. Chaos Solitons Fractals 62–63, Pages 55-75. https://doi.org/10.1016/j.chaos.2014.04.001
  • Rampino, M.R., Caldeira, K., Zhu, Y., 2021. A pulse of the Earth: A 27.5-Myr underlying cycle in coordinated geological events over the last 260 Myr. Geosci. Frontiers 126, 101245. https://doi.org/10.1016/j.gsf.2021.101245
  • Rampino, M.R., Caldeira, K., Zhu, Y., 2020. A 27.5-My underlying periodicity detected in extinction episodes of non-marine tetrapods, Hist. Biol. https://doi.org/10.1080/08912963.2020.1849178
  • Rampino, M.R., Prokoph, A., 2020. Are Impact Craters and Extinction Episodes Periodic? Implications for Planetary Science and Astrobiology. Astrobiol. 209, 1097-1108. https://doi.org/10.1089/ast.2019.2043
  • Rampino, M.R., Caldeira, K., 2015. Periodic impact cratering and extinction events over the last 260 million years. Mon. Not. R. Astron. Soc. 4544, 3480–3484. https://doi.org/10.1093/mnras/stv2088
  • Raup, D., 1985. Magnetic reversals and mass extinctions. Nature 314, 341–343. https://doi.org/10.1038/314341a0
  • Raup, D.M., Sepkoski, Jr., J.J., 1984. Periodicity of extinctions in the geologic past. Proc. Natl. Acad. Sci. U.S.A. 813, 801-805. https://doi.org/10.1073/pnas.81.3.801
  • Rial, J., Oh, J., Reischmann, E., 2013. Synchronization of the climate system to eccentricity forcing and the 100,000-year problem. Nat. Geosci. 6, 289–293. https://doi.org/10.1038/ngeo1756
  • Rohde, R., Muller, R., 2005. Cycles in fossil diversity. Nature 434, 208–210. https://doi.org/10.1038/nature03339
  • Ryskin, G., 2010. Abrupt global events in the Earth's history: a physics perspective. Rep. Prog. Phys. 73:122801. https://doi.org/10.1088/0034-4885/73/12/122801
  • Schmidt, P., Embleton, B., 1981. A geotectonic paradox: Has the Earth expanded? J. Geophys. 49(1):20-25. https://n2t.net/ark:/88439/y034403
  • Seidelmann, P., 1992. Explanatory Supplement to the Astronomical Almanac. A revision to the Explanatory Supplement to the Astronomical Ephemeris and the American Ephemeris and Nautical Almanac. University Science Books, Mill Valley, CA, United States. ISBN 0935702687
  • Shackleton, N., Berger, A., Peltier, W., 1990. An alternative astronomical calibration of the lower Pleistocene timescale based on ODP Site 677. Earth Environ. Sci. Trans. R. Soc. Edinb. 814, 251–261. http, //doi.org/10.1017/S0263593300020782
  • Shannon, C.E., 1948. A Mathematical Theory of Communication. Bell System Tech. J. 27, 379–423, 623–656. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  • Smith, A.B., 2007. Marine diversity through the Phanerozoic, problems and prospects. Bicentennial Review. J. Geol. Soc. 1644, 731–745. https://doi.org/10.1144/0016/76492006-184
  • Steeves, R.R., 1981. A statistical test for significance of peaks in the least squares spectrum. Collected Papers, Geodetic Survey, Department of Energy, Mines and Resources. Surveys and Mapping Branch, Ottawa Canada, pp. 149–166. http, //www2.unb.ca/gge/Research/GRL/LSSA/Literature/Steeves1981.pdf
  • Stefani, F., Xu, M., Sorriso-Valvo, L., Gerbeth, G., Günther, U., 2007. Oscillation or rotation: a comparison of two simple reversal models. Geophys. Astrophys. Fluid Dyn. 1013-4., 227-248. https://doi.org/10.1080/03091920701523311
  • Strogatz, S.H., 2000. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering Studies in Nonlinearity. CRC Press, United States, 512 pp. ISBN 0738204536
  • Svensson, I.-M., Bengtsson, A., Bylander, J., Shumeiko, V., Delsing, P., 2018. Period multiplication in a parametrically driven superconducting resonator. Appl. Phys. Lett. 113, 022602. https://doi.org/10.1063/1.5026974
  • Tanner L.H., Lucas S.G., 2014. Limitations of the Astronomically Tuned Timescale: A Case Study from the Newark Basin. In: Rocha, R., Pais, J., Kullberg, J., Finney, S. (Eds.) STRATI 2013, 1st International Congress on Stratigraphy: At the Cutting Edge of Stratigraphy. Springer Geology. https://doi.org/10.1007/978-3-319-04364-7_44
  • Taylor, J., Hamilton, S., 1972. Some tests of the Vaníček Method of spectral analysis. Astrophys. Space Sci. 17, 357–367. https://doi.org/10.1007/BF00642907
  • Uyeda, J.C., Hansen, T.F., Arnold, S.J., Pienaar, J., 2011. The million-year wait for macroevolutionary bursts. Proc. Natl. Acad. Sci. U.S.A. 10838, 15908-15913. https://doi.org/10.1073/pnas.1014503108
  • Valet, J.-P., Fournier, A., 2016. Deciphering records of geomagnetic reversals. Rev. Geophys. 54, 410–446. https://doi.org/10.1002/2015RG000506
  • Vaníček, P., 1969. Approximate spectral analysis by least-squares fit. Astrophys. Space Sci. 44., 387–391. https://doi.org/10.1007/BF00651344
  • Vaníček, P., 1971. Further development and properties of the spectral analysis by least-squares fit. Astrophys. Space Sci. 121, 10–33. https://doi.org/10.1007/BF00656134
  • Wells, D.E., Vaníček, P., Pagiatakis, S., 1985. Least squares spectral analysis revisited. Department of Geodesy & Geomatics Engineering Technical Report 84, University of New Brunswick, Canada. http, //www2.unb.ca/gge/Pubs/TR84.pdf
  • Westerhold, T., Rohl, U., Frederichs, T., Bohaty, S.M., Zachos, J.C., 2015. Astronomical calibration of the geological timescale: closing the middle Eocene gap. Clim. Past 119, 1181–1195. https://doi.org/10.5194/cp-11-1181-2015
  • Westerhold, T., Rohl, U., Laskar, J., 2012. Time scale controversy: Accurate orbital calibration of the early Paleogene. Geochem. Geophys. Geosyst. 13, Q06015. https://doi.org/10.1029/2012GC004096
  • Wu, H., Zhang, S., Hinnov, L.A., Feng, Q., Jiang, G., Li, H., Yang, T., 2013. Late Permian Milankovitch cycles. Nat. Commun. 4, 2452. https://doi.org/10.1038/ncomms3452
  • Yao, N.Y., Nayak, C., Balents, L., Zaletel, M.P., 2020. Classical discrete time crystals. Nat. Phys. 16, 438–447. https://doi.org/10.1038/s41567-019-0782-3
  • Yao, N.Y., Nayak, C., 2018. Time crystals in periodically driven systems. Phys. Today 71, 40-47. https://doi.org/10.1063/PT.3.4020