Published April 26, 2021 | Version v1
Journal article Open

Application in decision making based on fuzzy parameterized hypersoft set theory

  • 1. Department of Mathematics, University of Management and Technology, Lahore, Pakistan.

Description

Hypersoft set is the generalization of the soft set as it converts single attribute function to multi-attribute function. The core purpose of this study is to make the existing literature regarding fuzzy parameterized soft set in line with the need for multi-attribute function. We first conceptualize the fuzzy parameterized hypersoft set along with some of its fundamentals. Then we propose a decision-making-based algorithm with the help of this theory. Moreover, an illustrative example is presented which depicts its validity for successful application to the problems involving vagueness and uncertainties.

Files

AM-2104-5105.pdf

Files (364.2 kB)

Name Size Download all
md5:e2af13b5c38cbe0168af954cb2b10ddc
364.2 kB Preview Download

Additional details

Related works

Cites
Journal article: 2457-0834 (ISSN)

References

  • Zadeh, L. (1965). Fuzzy sets. Information and control, 8(3), 338-353.
  • Molodtsov, D. (1999). Soft Set Theory - First Results. Comput Math with Appl., 37, 19-31.
  • Maji. P.K., Biswas R. and Roy, A. R. (2003). Soft Set Theory. Comput Math with Appl., 45, 555-562.
  • Maji, P. K., Biswas, R. and Roy, A. R. (2001). Fuzzy soft sets. Journal of Fuzzy Mathematics, 9(3), 589–602 .
  • Pei, D. and Miao, D. (2005). From soft set to information system. In international conference of granular computing IEEE, 2, 617-621.
  • Ali, M. I., Feng, F., Liu, X., Min, W. K. and Sabir, M. (2009). On some new operations in soft set theory. Comput Math with Appl., 57, 1547-1553.
  • Babitha, K. V. and Sunil, J. J., (2010). Soft set relations and functions. Comput Math with Appl., 60, 1840-1849.
  • Babitha, K. V. and Sunil, J. J., (2011). Transitive closure and ordering in soft set. Comput Math with Appl., 61, 2235-2239.
  • Sezgin, A. and Atagun A. O., (2011). On operations of soft sets. Comput Math with Appl., 61(5), 1457-1467.
  • Ge, X. and Yang, S. (2011). Investigations on some operations of soft sets. World Academy of Science Engineering and Technology, 75, 1113-1116.