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Abstract: Hypersoft set is the generalization of soft set as it converts single attribute function to multi-attribute

function. The core purpose of this study is to make the existing literature regarding fuzzy parameterized soft set in

line with the need of multi-attribute function. We first conceptualize the fuzzy parameterized hypersoft set along with

some of its fundamentals. Then we propose decision making based algorithm with the help of this theory. Moreover, an

illustrative example is presented which depicts its validity for successful application to the problems involving vagueness

and uncertainties.
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1. Introduction

In 1965, Zadeh [1] conceptualized the theory of fuzzy sets as mathematical mean to tackle many intricate

problems involving various uncertainties, in different fields of mathematical sciences. But it has its own

complexities which restrain it to solve these problems successfully. The reason for these hurdles is, possibly, the

inadequacy of the parametrization tool. A mathematical tool is needed for dealing with uncertainties which

should be free of all such impediments. In 1999, Molodtsov [2] has the honor to introduce such mathematical

tool called soft sets in literature as a new parameterized family of subsets of the universe of discourse. Maji et

al. [3] extended the concept and introduced some fundamental terminologies and operations of soft set. They

also defined fuzzy soft set in [4] and successfully applied it in decision making. Some authors [5–11] discussed

some more properties and relational features of soft set theory. Many researchers [12–24] developed certain

hybrids with soft sets to get more generalized results for implementation in decision making and other related

disciplines. Ça ğman et al. [25, 26] conceptualized fuzzy parameterized soft set which is the ordered pair of

membership function of fuzzy set and approximate function of fuzzy soft. They discussed its properties and

applied this theory to different fields.

In 2018, Smarandache [27] introduced the concept of hypersoft set as a generalization of soft set. Saeed et al.

[28, 29] and Mujahid et al. [30] discussed some of its fundamentals and basic operations. Rahman et al. [35, 36]

applied this concept in complex and convex set theories.

In many real life situations, we have disjoint attribute-valued sets corresponding to distinct attributes. The

existing soft set theory doesn’t deal such sets; therefore hypersoft set theory is conceptualized to tackle such

situations. Motivating from the work of [25, 27, 30], fuzzy parameterized hypersoft set is characterized in
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order to adequate the literature regarding fuzzy parameterized soft set for multi attribute-valued functions and

its some essential elementary properties are discussed. A decision making based algorithm is proposed with

successful application for the best choice of product.

2. Preliminaries

Here some basic terms are recalled from existing literature to support the proposed work. Throughout the paper,

U , P (U) and I• will denote the universe of discourse, power set of U and closed unit interval respectively.

Definition 2.1. [1]

A fuzzy set X ⊆ U defined as X = {(ε, ζX (ε))|ε ∈ U} such that ζX : U → I• where ζX (ε) denotes the belonging

value of ε ∈ X .

Definition 2.2. [2]

A pair (ζS ,Λ) is called a soft set over U , where ζS : Λ→ P (U) and Λ be a set of attributes.

Definition 2.3. [3]

A soft set (ζS1
,Λ1) is a soft subset of another soft set (ζS2

,Λ2) if

i Λ1 ⊆ Λ2 , and

ii ∀ω ∈ Λ1, ζS1
(ω) and ζS2

(ω) are identical approximations.

For more detail on soft set, see [2–11]

Definition 2.4. [25]

The pair (Ψ, G) is called a hypersoft set over U , where G is the cartesian product of n disjoint sets

G1, G2, G3, ...., Gn having attribute values of n distinct attributes g1, g2, g3, ...., gn respectively and Ψ : G →
P (U).

For more definitions and operations of hypersoft set, see [25–28, 30–36].

3. Fuzzy Parameterized Hypersoft Set (fphs-set)with Application

In this section, fuzzy parameterized hypersoft set is conceptualized and some of its fundamentals are discussed.

Definition 3.1. Let A = {A1,A2,A3, ....,An} be a collection of disjoint attribute-valued sets corresponding

to n distinct attributes α1, α2, α3, ..., αn respectively. An FP-hypersoft set (fphs-set) ΨF over U is defined as

ΨF = {(ζF (g)/g, ψF (g)) : g ∈ G, ψF (g) ∈ P (U), ζF (g) ∈ I•}

where

(i) G = A1 ×A2 ×A3 × ....×An

(ii) F is a fuzzy set over G with ζF : G→ I• as membership function of fphs-set.

(iii) ψF : G→ P (U) is called approximate function of fphs-set.

Now throughout the remaining part of the paper, ΩFPHS(U), ζF and ψF will represent the collection of all

fphs-sets over U , membership function and approximate function respectively.
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Definition 3.2. Let ΨF ∈ ΩFPHS(U). If ψF (g) = φ for all g ∈ G , then ΨF is called an F -empty fphs-set,

denoted by ΨΦF . If F = φ , then ΨF is called an empty fphs-set, denoted by ΨΦ .

Definition 3.3. Let ΨF ∈ ΩFPHS(U). If F is a crisp subset of G and ψF (g) = U for all g ∈ F , then ΨF

is called F -universal fphs-set, denoted by ΨF̃ . If F = G , then the F -universal fphs-set is called universal

fphs-set, denoted by ΨG̃ .

Example 3.1. Consider U = {u1, u2, u3, u4, u5} and A = {A1,A2,A3} with A1 = {a11, a12}, A2 =

{a21, a22},A3 = {a31} , then
G = A1 ×A2 ×A3

G = {(a11, a21, a31) , (a11, a22, a31) , (a12, a21, a31) , (a12, a22, a31)} = {g1, g2, g3, g4} .
Case 1.
If F1 = {0.2/g2, 0.5/g3, 1.0/g4} and ψF1(g2) = {u2, u4} , ψF1(g3) = φ , and ψF1(g4) = U , then ΨF1 =

{(0.2/g2, {u2, u4}), (0.5/g3, φ) , (1.0/g4, U)} .
Case 2.
If F2 = {0.3/g2, 0.7/g3}, ψF2

(g2) = φ and ψF2
(g3) = φ , then ΨF2

= ΨφF2
.

Case 3.
If F3 = φ , then ΨF3 = Ψφ .

Case 4.

If F4 = {1.0/g1, 1.0/g2} , ψF4
(g1) = U , and ψF4

(g2) = U , then ΨF4
= ΨF̃4

.

Definition 3.4. Let ΨF1
, ΨF2

∈ ΩFPHS(U) then ΨF1
is a fphs-subset of ΨF2

, denoted by ΨF1
⊆̃ΨF2

if

ζF1
(g) ≤ ζF2

(g) and ψF1
(g) ⊆ ψF2

(g) for all g ∈ G .

Proposition 3.1. Let ΨF1
,ΨF2

,ΨF3
∈ ΩFPHS(U) then

1. ΨF1
⊆̃ΨG̃ .

2. Ψφ⊆̃ΨF1 .

3. ΨF1⊆̃ΨF1 .

4. ΨF1
⊆̃ΨF2

and ΨF2
⊆̃ΨF3

⇒ ΨF1
⊆̃ΨF3

.

Definition 3.5. Let ΨF1
,ΨF2

∈ ΩFPHS(U) then, ΨF1
and ΨF2

are fphs-equal, represented as ΨF1
= ΨF2

,

iff ζF1
(x) = ζF2

(x) and ψF1
(g) = ψF2

(g) for all g ∈ G .

Proposition 3.2. Let ΨF1
,ΨF2

,ΨF3
∈ ΩFPHS(U) then,

1. If ΨF1
= ΨF2

and ΨF2
= ΨF3

⇒ ΨF1
= ΨF3

.

2. ΨF1⊆̃ΨF2 and ΨF2⊆̃ΨF1 ⇔ ΨF1 = ΨF2 .

Definition 3.6. Let ΨF ∈ ΩFPHS(U) then, complement of ΨF (i.e. Ψc̃
F ) is an fphs-set given as ζ c̃F (g) =

1− ζF (g) and ψc̃F (g) = U \ ψF (g)

Proposition 3.3. Let ΨF ∈ ΩFPHS(U) then,

1. (Ψc̃
F )c̃ = ΨF .
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2. Ψc̃
Φ = ΨG̃ .

Definition 3.7. Let ΨF1
,ΨF2

∈ ΩFPHS(U) then, union of ΨF1
and ΨF2

, denoted by ΨF1
∪̃ΨF2

, is defined

by

1. ζF1∪̃F2
(g) = max{ζF1

(x), ζF2
(g)} and

2. ψF1∪̃F2
(g) = ψF1

(g) ∪ ψF2
(g), for all g ∈ G .

Proposition 3.4. Let ΨF1 ,ΨF2 ,ΨF3 ∈ ΩFPHS(U) then,

1. ΨF1∪̃ΨF1 = ΨF1 .

2. ΨF1
∪̃ΨΦ = ΨF1

.

3. ΨF1
∪̃ΨG̃ = ΨG̃ .

4. ΨF1
∪̃ΨF2

= ΨF2
∪̃ΨF1

.

5. (ΨF1
∪̃ΨF2

) ∪̃ΨF3
= ΨF1

∪̃ (ΨF2
∪̃ΨF3

) .

Definition 3.8. Let ΨF1 ,ΨF2 ∈ ΩFPHS(U) then intersection of ΨF1 and ΨF2 , denoted by ΨF1∩̃ΨF2 , is an

fphs-set defined by ζF1∩̃F2
(g) = min{ζF1(g), ζF2(g)} and ψF1∩̃F2

(g) = ψF1(g) ∩ ψF2(g)

Proposition 3.5. Let ΨF1 ,ΨF2 ,ΨF3 ∈ ΩFPHS(U) then

1. ΨF1
∩̃ΨF1

= ΨF1
.

2. ΨF1∩̃ΨΦ = ΨΦ .

3. ΨF1
∩̃ΨG̃ = ΨF̃1

.

4. ΨF1
∩̃ΨF2

= ΨF2
∩̃ΨF1

.

5. (ΨF1
∩̃ΨF2

)∩̃ΨΨF3
= ΨX ∩̃ (ΨF2

∩̃ΨΨF3
) .

Remark 3.1. Let ΨF ∈ ΩFPHS(U) . If ΨF 6= ΨG̃ , then ΨF ∪̃Ψc̃
F 6= ΨG̃ and ΨF ∩̃Ψc̃

F 6= ΨΦ

Proposition 3.6. Let ΨF1
,ΨF2

∈ ΩFPHS(U) D’Morgan’s laws are valid

1. (ΨF1
∪̃ΨF2

)c̃ = Ψc̃
F1
∩̃Ψc̃

F2
.

2. (ΨF1
∩̃ΨF2

)c̃ = Ψc̃
F1
∪̃Ψc̃

F2
.

Proof. For all g ∈ G ,

(1). Since (ζF1∪̃F2
)c̃(g) = 1− ζF1∪̃F2

(g)

= 1−max{ζF1
(g), ζF2

(g)}
= min{1− ζF1

(g), 1− ζF2
(g)}

= min{ζF1 c̃(g), ζF2 c̃(g)}
= ζF c̃

1 ∩̃F c̃
2
(g)

and

(ψF1∪̃F2
)c̃(g) = U \ ψF1∪̃F2

(g)
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= U \ (ψF1(g) ∪ ψF2(g))

= (U \ ψF1(g)) ∩ (U \ ψF2(g))

= ψF c̃
1
(g) ∩̃ψF c̃

2
(g)

= ψF c̃
1 ∩̃ F c̃

2
(g).

similarly (2) can be proved easily.

Proposition 3.7. Let ΨF1
,ΨF2

,ΨF3
∈ ΩFPHS(U) then

1. ΨF1
∪̃ (ΨF2

∩̃ΨF3
) = (ΨF1

∪̃ΨF2
) ∩̃ (ΨF1

∪̃ΨF3
) .

2. ΨF1
∩̃ (ΨF2

∪̃ΨF3
) = (ΨF1

∩̃ΨF2
) ∪̃ (ΨF1

∩̃ΨF3
) .

Proof. For all g ∈ G ,

(1). Since ζF1∪̃(F2∩̃F3)(g) = max{ζF1
(g), ζF2∩̃F3

(g)}
= max{ζF1(g),min{ζF2(g), ζF3(g)}}
= min{max{ζF1

(g), ζF2
(g)},max{ζF1

(g), ζF3
(g)}}

= min{ζF1∪̃F2
(g), ζF1∪̃F3

(g)}
= ζ(F1∪̃F2)∩̃(F1∪̃F3)(g)

and
ψF1∪̃(F2∩̃F3)(g) = ψF1

(g) ∪ ψF2∩̃F3
(g)

= ψF1
(g) ∪ (ψF2

(g) ∩ ψF3
(g))

= (ψF1
(g) ∪ ψF2

(g)) ∩ (ψF1
(g) ∪ ψF3

(g))

= ψF1∪̃F2
(g) ∩ ψF1ŨF3

(g)

= ψ(F1∪̃F2)∩̃(F1∪̃F3)(g)

In the same way, (2) can be proved.

4. Fuzzy Decision Set of fphs-set

Here novel algorithm is proposed with the help of characterization of fuzzy decision set on fphs-set which based

on decision making technique and is explained with example.

Definition 4.1. Let ΨF ∈ ΩFPHS(U) then a fuzzy decision set of ΨF (i.e. ΨD
F ) is represented as

ΨD
F =

{
ζDF (u)/u : u ∈ U

}
where ζΨD

F
: U → I• and

ζΨD
F

(u) =
1

|S(F)|
∑

v∈S(F)

ζΨ(v)ΓψF (v)(u)

where S(F) is the support set of F with

ΓψF (v)(u) =

{
1 ; u ∈ ΓψF (v)
0 ; u /∈ ΓψF (v)
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4.1. Proposed Algorithm

Once ΨD
F has been established, it may be indispensable to select the best single substitute from the options.

Therefore, decision can be set up with the help of following algorithm.

Step 1 Determine F = {ζF (g)/g : ζF (g) ∈ I•, g ∈ G} ,

Step 2 Find ψF (g)

Step 3 Construct ΨF over U ,

Step 4 Compute ΨD
F ,

Step 5 Choose the maximum of ζΨD
F

(u).

Example 4.1. Suppose that Mr. James Peter wants to buy a mobile from a mobile market. There are eight

kinds of mobiles (options) which form the set of discourse U = {m1,m2,m3,m4,m5,m6,m7,m8} . The best

selection may be evaluated by observing the attributes i.e. a1 = Company, a2 = Camera Resolution, a3 = Size,

a4 = RAM, and a5 = Battery power. The attribute-valued sets corresponding to these attributes are:

B1 = {b11, b12}
B2 = {b21, b22}
B3 = {b31, b32}
B4 = {b41, b42}
B5 = {b51}
then G = B1 ×B2 ×B3 ×B4 ×B5

G = {g1, g2, g3, g4, ....., g16} where each gi, i = 1, 2, ..., 16 , is a 5-tuples element.

Step 1 :

From table 1, we can construct F as

Table 1. Degrees of Membership ζF (gi)

ζF (gi) Degree ζF (gi) Degree
ζF (g1) 0.1 ζF (g9) 0.9
ζF (g2) 0.2 ζF (g10) 0.16
ζF (g3) 0.3 ζF (g11) 0.25
ζF (g4) 0.4 ζF (g12) 0.45
ζF (g5) 0.5 ζF (g13) 0.35
ζF (g6) 0.6 ζF (g14) 0.75
ζF (g7) 0.7 ζF (g15) 0.65
ζF (g8) 0.8 ζF (g16) 0.85

F =

 0.1/g1, 0.2/g2, 0.3/g3, 0.4/g4, 0.5/g5, 0.6/g6,
0.7/g7, 0.8/g8, 0.9/g9, 0.16/g10, 0.25/g11,
0.45/g12, 0.35/g13, 0.75/g14, 0.65/g15, 0.85/g16


Step 2 :

Table 2 presents ψF (gi) corresponding to each element of G .

Step 3 :
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With the help of tables 1 and 2, we can construct ΨF as

ΨF =



(0.1/g1, {m1,m2}) , (0.2/g2, {m1,m2,m3}) , (0.3/g3, {m2,m3,m4}) , (0.4/g4, {m4,m5,m6}) ,
(0.5/g5, {m6,m7,m8}) , (0.6/g6, {m2,m3,m4,m7}) , (0.7/g7, {m1,m3,m5,m6}) ,
(0.8/g8, {m2,m3,m6,m7}) , (0.9/g9, {m2,m3,m6,m7,m8}) , (0.16/g10, {m1,m3,m6,m7,m8}) ,
(0.25/g11, {m2,m4,m6,m7,m8}) , (0.45/g12, {m1,m2,m3,m6,m7,m8}) ,
(0.35/g13, {m2,m3,m5,m7,m8}) , (0.75/g14, {m1,m3,m5,m7,m8}) ,
(0.65/g15, {m1,m2,m3,m5,m7,m8}) , (0.85/g16, {m4,m5,m6,m7,m8})


Step 4 :

Table 2. Approximate functions ψF (gi)

gi ψF (gi) gi ψF (gi)
g1 {m1,m2} g9 {m2,m3,m6,m7,m8}
g2 {m1,m2,m3} g10 {m1,m3,m6,m7,m8}
g3 {m2,m3,m4} g11 {m2,m4,m6,m7,m8}
g4 {m4,m5,m6} g12 {m1,m2,m3,m6,m7,m8}
g5 {m6,m7,m8} g13 {m2,m3,m5,m7,m8}
g6 {m2,m3,m4,m7} g14 {m1,m3,m5,m7,m8}
g7 {m1,m3,m5,m6} g15 {m1,m2,m3,m5,m7,m8}
g8 {m2,m3,m6,m7} g16 {m4,m5,m6,m7,m8}

Table 3. Membership values ζΨD
F

(mi)

mi ζΨD
F

(mi) mi ζΨD
F

(mi)

m1 0.19 m5 0.23
m2 0.29 m6 0.31
m3 0.37 m7 0.39
m4 0.15 m8 0.30

From table 3, we can construct ΨD
F as

ΨD
F = {0.19/m1, 0.29/m2, 0.37/m3, 0.15/m4, 0.23/m5, 0.31/m6, 0.39/m7, 0.30/m8}

Step 5 :

Since maximum of ζΨD
F

(mi) is 0.39 so the mobile m7 is selected.

5. Conclusion

In this study, fuzzy parameterized hypersoft set is conceptualized along with some of elementary properties and

theoretic operations. A novel algorithm is proposed for decision making and is validated with the help of an

illustrative example for best purchasing of mobile from mobile market. Future work may include the extension

of this work for other fuzzy-like environments and the implementation for solving more real life problems in

decision making.
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