Journal article Open Access

An analytical solution of the Laplace equation with Robin conditions by applying Legendre transform

Mottin, Stéphane

Contact person(s)
Mottin, Stéphane

We derived the analytical solution of the Laplace equation with Robin conditions on a sphere with azimuthal symmetry by applying Legendre transform, which was expressed in terms of the Appell hypergeometric function.

\( \Delta\)u=0 in a unit sphere

∂u(r, \(\zeta\))/∂r|r=1 + h u(1, \(\zeta\))= f(\(\zeta\)) on a unit sphere,

\(\zeta\) = cos (\(\theta\)), \(\theta\) is the azimuthal angle,  and h \(\in \textbf{R} ^{*}_{+}\) 

The function f(\(\theta\)) is a prescribed function and is assumed to be a square-integrable function.

Moreover the analytical expression of the integral:

\(\int_0^r { \rho^{h-1}\over \sqrt{1-2\zeta \rho+\rho^2}}d \rho\)

is given in terms of the Appell function F1.

In many experimental approaches, the Robin coefficient h is the main unknown parameter for example in transport phenomena where the Robin coefficient is the dimensionless Biot number. The usefulness of this formula is illustrated by some examples of inverse problems.

License CC-BY-NC-ND. --------- French law about open access and open science: https://www.legifrance.gouv.fr/affichTexte.do?cidTexte=JORFTEXT000033202746&categorieLien=id ----------------------- LOI n° 2016-1321 du 7 octobre 2016 pour une République numérique - Article 30.
Files (3.3 MB)
Name Size
2016_mottin_37-.pdf
md5:76226c2747253189e4287361f5bc3bde
886.6 kB Download
2016_mottin_37-LegendreTransfo-publisher.pdf
md5:7089e64fd920b48aa0b1bf2208f7ea30
1.7 MB Download
2016_mottin_37.docx
md5:65c411129eac36cd7b353e70d3d3a1a8
687.2 kB Download
  • Arfken GB. Mathematical methods for physicists. New York: Academic Press; 1970.
  • Arridge SR, Cope M, Delpy DT. The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis. Phys Med Biol. 1992;37:1531–1560
  • Bailey WN. On the reducibility of Appell s function F4. Q J Math. 1934; 5:291–292
  • Butkovskiĭ AG. Green s functions and transfer functions handbook. Chichester: Ellis Horwood; 1982
  • Carslaw HS, Jaeger JC. Conduction of heat in solids. Oxford: Clarendon Press; 1959.
  • Carslaw HS. Introduction to the theory of Fourier s series and integrals. New York: Dover Publications; 1950.
  • Churchill RV. The operational calculus of Legendre transforms. J Math Phys Camb. 1954;33:165–178 ; DOI: 10.1002/sapm1954331165
  • Cuesta FJ, Lamúa M, Alique R. A new exact numerical series for the determination of the Biot number: application for the inverse estimation of the surface heat transfer coefficient in food processing. Int J Heat Mass Transfer. 2012;55:4053–4062
  • Dassios G, Fokas A. Methods for solving elliptic PDEs in spherical coordinates. SIAM J Appl Math. 2008;68:1080–1096
  • Fasino D, Inglese G. An inverse Robin problem for Laplace s equation: theoretical results and numerical methods. Inverse Probl. 1999;15:41–48
  • Gradshtein IS, Ryzhik IM. Table of integrals, series, and products. New York: Academic Press; 1965.
  • Grebenitcharsky RS, Sideris MG. The compatibility conditions in altimetry–gravimetry boundary value problems. J Geodesy. 2005;78:626–636 ; DOI: 10.1007/s00190-004-0429-7
  • Hào DN, Thanh PX, Lesnic D. Determination of the ambient temperature in transient heat conduction. IMA J Appl Math. 2015;80:24–46
  • Kellogg OD. Foundations of potential theory. New York: Dover Publications; 1953.
  • Kondjoyan A. A review on surface heat and mass transfer coefficients during air chilling and storage of food products. Int J Refrig. 2006;29:863–875
  • Lanzani L, Shen Z. On the Robin boundary condition for Laplace s equation in Lipschitz domains. Commun Part Diff Eq. 2005;29:91–109. Doi: 10.1081/PDE-120028845
  • Li YL, Liu CH, Franke SJ. Three-dimensional Green s function for wave propagation in a linearly inhomogeneous medium—the exact analytic solution. J Acoust Soc Am. 1990;87:2285–2291 ; DOI 10.1121/1.399072
  • Martinec Z, Grafarend EW. Construction of Green s function to the external Dirichlet boundary-value problem for the Laplace equation on an ellipsoid of revolution. J Geodesy. 1997;71:562–570 ; DOI: 10.1007/s001900050124
  • Mottin S, Panasenko G, Ganesh SS. Multiscale modeling of light absorption in tissues: limitations of classical homogenization approach. Plos One. 2010;5(12):e14350. doi:10.1371/journal.pone.0014350
  • Schweiger M, Arridge SR, Hiraoka M, Delpy DT. The finite element method for the propagation of light in scattering media: boundary and source conditions. Med Phys. 1995;22:1779–1792
  • Suda R, Takami M. A fast spherical harmonics transform algorithm. Math Comput. 2002;71:703–716
  • Zauderer E. Partial differential equations of applied mathematics. New York: Wiley; 1983.
  • Özisik MN. Heat transfer: a basic approach. New York: McGraw-Hill; 1985.
157
21
views
downloads
All versions This version
Views 157157
Downloads 2121
Data volume 21.4 MB21.4 MB
Unique views 157157
Unique downloads 1919

Share

Cite as