Conference paper Open Access

Adaptive context-aware energy optimization for services on mobile devices with use of machine learning considering security aspects

Nawrocki Piotr; Sniezynski Bartlomiej; Kolodziej Joanna; Szynkiewicz Pawel

In this paper, we present an original adaptive task scheduling system, which optimizes the energy consumption of mobile devices using machine learning mechanisms and context information. The system learns how to allocate resources appropriately: how to schedule services/tasks optimally between the device and the cloud, which is especially important in mobile systems. Decisions are made taking the context into account (e.g. network connection type, location, potential time, and cost of executing the application or service). In this study, a supervised learning agent architecture and service selection algorithm are proposed to solve this problem. Adaptation is performed online, on a mobile device. Information about the context, task description, the decision made, and its results such as power consumption are stored and constitute training data for a supervised learning algorithm, which updates the knowledge used to determine the optimal location for the execution of a given type of task. To verify the solution proposed, appropriate software has been developed and a series of experiments have been conducted. Results show that due to the experience gathered and the learning process performed, the decision module has consequently become more efficient in assigning the task to either the mobile device or cloud resources. In face of presented improvements, the security issues inherent within the context of mobile application and cloud computing are further discussed. As threats associated with mobile data offloading are a serious concern, often preventing the utilization of cloud services, we propose a more security-focused approach for our solution, preferably without hindering the performance.

Files (172.1 kB)
Name Size
IWOSEMC-2_NoCopy.pdf
md5:a929885425f11810baec1869fab84ad3
172.1 kB Download
13
27
views
downloads
All versions This version
Views 1313
Downloads 2727
Data volume 4.6 MB4.6 MB
Unique views 1212
Unique downloads 2626

Share

Cite as