
Adaptive context-aware energy optimization for
services on mobile devices with use of machine

learning considering security aspects

1st Piotr Nawrocki
Department of Computer Science

AGH University of Science and Technology
Krakow, Poland

piotr.nawrocki@agh.edu.pl

2nd Bartlomiej Sniezynski
Department of Computer Science

AGH University of Science and Technology
Krakow, Poland

bartlomiej.sniezynski@agh.edu.pl

3rd Joanna Kolodziej
Department of Computer Science
Cracow University of Technology

Krakow, Poland

jokolodziej@pk.edu.pl

4th Pawel Szynkiewicz
Research and Academic Computer Network

Warsaw, Poland

pawel.szynkiewicz@nask.pl

Abstract—In this paper we present an original adaptive task
scheduling system, which optimizes the energy consumption of
mobile devices using machine learning mechanisms and context
information. The system learns how to allocate resources ap-
propriately: how to schedule services/tasks optimally between
the device and the cloud, which is especially important in
mobile systems. Decisions are made taking the context into
account (e.g. network connection type, location, potential time
and cost of executing the application or service). In this study,
a supervised learning agent architecture and service selection
algorithm are proposed to solve this problem. Adaptation is
performed online, on a mobile device. Information about the
context, task description, the decision made and its results such as
power consumption are stored and constitute training data for a
supervised learning algorithm, which updates the knowledge used
to determine the optimal location for the execution of a given type
of task. To verify the solution proposed, appropriate software has
been developed and a series of experiments have been conducted.
Results show that due to the experience gathered and the learning
process performed, the decision module has consequently become
more efficient in assigning the task to either the mobile device or
cloud resources. In face of presented improvements, the security
issues inherent within the context of mobile application and
cloud computing are further discussed. As threats associated with
mobile data offloading are a serious concern, often preventing
the utilization of cloud services, we propose a more security
focused approach for our solution, preferably without hindering
the performance.

Index Terms—adaptation, context-aware system, energy opti-
mization, security, machine learning, Mobile Cloud Computing

I. INTRODUCTION

The rapid development of mobile devices and the growing

importance of applications and services that run on these

devices has resulted in a need to pay more attention to the

quality parameters associated with the use of such solutions.

So far, in the context of the operating quality of applications

and services of this type [1], primarily QoS (Quality of

Service) parameters were considered that cover the network

connection status (including delay, jitter and bandwidth) and

QoE (Quality of Experience) parameters that show the level of

user satisfaction with a given application or service. It should

be noted that in the context of mobile devices using battery

power, a prerequisite for maintaining the highest level of both

QoS and QoE parameters is ensuring the longest possible

uptime of the device. It can even be claimed that ensuring

the longest possible uptime of the mobile device (alongside

the applications and services running on it) from the point of

view of conserving power is in fact a QoE parameter because it

increases the level of user satisfaction with mobile applications

and services.

Increasing mobile device uptime is possible through opti-

mizing power consumption while preserving the best possible

quality parameters of mobile services and applications. Such

optimization can be implemented at the software or hardware

levels and should take into account the context in which the

mobile device operates, including network connection quality,

location and potential time and cost of executing the applica-

tion or service. The use of context information may allow the

adaptation of mobile services and applications to prevailing

conditions in order to improve the quality parameters (in-

cluding execution time) and to optimize power consumption.

The adaptation process in the context of optimizing power

consumption can be implemented with respect to the mobile

device itself and also to the mobile services and applications

running on the device. Methods allowing for adaptations of

this type often use remote resources such as cloud computing

(the Mobile Cloud Computing concept [2]) or another mobile

device with appropriate resources (the cloudlets concept), to

which applications/services or their components are offloaded

in order to optimize the operation of the mobile device [3]. The

choice of when and what to offload from the mobile device

can be made offline during the software development process

or dynamically when the device is working. Adaptation makes

708

2020 20th IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID)

978-1-7281-6095-5/20/$31.00 ©2020 IEEE
DOI 10.1109/CCGrid49817.2020.00-19

Authorized licensed use limited to: Politechnika Krakowska. Downloaded on September 01,2020 at 09:56:50 UTC from IEEE Xplore. Restrictions apply.

it possible to reduce the time and costs of executing applica-

tions/services on mobile devices and to optimize their power

consumption online.

In this paper we present our original concept for an adaptive

system for optimizing the power consumption of mobile de-

vices using context-based and machine learning mechanisms.

Having analyzed existing solutions, we found out that there are

no systems that would enable the dynamic, online adaptation

of mobile applications/services by using machine learning

algorithms while simultaneously accounting for the context

in which the mobile device is located. A few articles describe

solutions that use machine learning algorithms but these have

some limitations such as requiring the use of models developed

previously in offline mode or not taking into account specific

applications/services when optimizing the power consumption

of a mobile device. Our innovative solution works fully online

on the mobile device being optimized and enables dynamic

adaptation using the context in which applications/services are

executed on the mobile device. It enables the costs and time

required to execute mobile applications/services to be reduced

and helps to optimize the power consumption of the mobile

device.

The classic approach to online learning is based on rein-

forcement learning [4]. Our solution is based on supervised

learning, like in [5], in which it is executed offline. We show

that it is possible to apply it online. Instead of preparing the

training data set once at the beginning, the training data can

be automatically extended and the learned knowledge updated

while it is in use, just like in reinforcement learning. It is a

novel approach to online learning. Our results from other do-

mains demonstrate that fewer trials are required to find a good

policy than in the case of reinforcement learning, especially in

a complex environment (see e.g. [6]). This research shows that

this type of learning is applicable to practical problems that

are encountered in mobile computing. As a result, knowledge

specific to every device may be efficiently learned locally in

this device even while it is in use. There is no need to prepare

a separate strategy for every device type offline. This also

resolves scalability and confidentiality issues.

As stated previously, our solution bases firmly on the

parading of Mobile Cloud Computing (abbrev. MCC), a novel

design combining cloud computing and mobile devices. MCC

extends the capabilities of mobile devices, allowing them to

run rich, mobile applications by providing a scalable storage,

computational power and resource availability. Despite its

numerous advantages and growing popularity, mobile cloud

still has its limitations and problems, the most significant being

security-related issues. Mobile clouds are vulnerable to various

attacks such as Distributed Denial of Service (DDoS) or Man-

in-the-middle (MITM), possible ramifications of which include

system failure, infection of malicious codes or private data

leakage or loss. Those are the challenges the designers of

mobile cloud services have to face. From our point of view,

mobile cloud is a third party resource which security levels are

independent of us. We recognize that there is no possibility to

ensure that a given service adheres to the required standards of

security measures. In this work we did not focus on developing

and presenting a security architecture for mobile clouds. To

address the security issue we extended our original solution

to take into account additional parameters, i.e. resources

trust levels and tasks security requirement levels. The aim is

to minimize the energy consumption without compromising

security requirements for task execution.

The structure of the article is as follows: Section II presents

the analysis of research in the field of power optimization in

the context of mobile devices, Section III presents solutions

in the field of machine learning on mobile devices, Section IV

describes the adaptive power optimization system developed

for mobile devices using context information, Section VI in-

troduces the results of the experiments conducted and Section

VII contains conclusions.

II. RELATED WORK

Issues related to power management are becoming increas-

ingly relevant, inter alia in the context of modern distributed

systems, including those using virtualization and cloud com-

puting In [7], the authors present an analysis of power-

saving techniques and examine the capabilities of machine

learning in automatic power management systems. However,

the article lacks a broader discussion of machine learning

algorithms and aspects of possible adaptation. The analysis

only considers desktop and similar systems and does not

cover mobile devices, which have become an important part

of modern distributed systems.

The power consumption aspect has been very important

since mobile devices, including mobile phones, first came

into existence. A lot of papers have been published on this

matter including [8] [9] and some recent studies where authors

present a general analysis of power management in the context

of mobile devices [10] and energy saving strategies in the

context of mobile device applications [11]. In [9], the authors

present different methods described in literature that allow

for increasing the energy efficiency of mobile devices at the

software and hardware levels, including power management

at the level of operating system, the management of sensors

and communication interfaces and the use of cloud computing.

[11] presents the strategies that can be implemented by the

mobile application developer: Mobile Computation Offload-

ing, sequential programs and GUI design.

Some publications such as [12] analyze in more detail

the possibilities of saving mobile device power using cloud

computing. The authors present an analysis of power con-

sumption required when offloading calculations to the cloud

using the network interfaces of mobile devices. They also

analyze situations where using MCC concept may not lead

to power savings. This may be related to confidentiality and

data security considerations that necessitate more CPU usage

(e.g. in the case of data encryption processes) and thus cause

increased power consumption. Ensuring the reliable execution

of certain services in the absence of proper communication

with the cloud may also lead to increased mobile device power

consumption. However, the authors only discuss theoretical

709

Authorized licensed use limited to: Politechnika Krakowska. Downloaded on September 01,2020 at 09:56:50 UTC from IEEE Xplore. Restrictions apply.

considerations related to power saving in MCC environment.

Their research does not include practical tests and discussions

of possible adaptation (e.g. with the use of machine learning

algorithms) to prevailing conditions in which services are

executed in the context of their execution time and power

consumption.

The use of mobile device communication modules has

a significant impact on power consumption. [13] introduces

the concept of minimizing data transmission costs in MCC

environment. The authors propose a solution that uses and

at the same time extends the CloneCloud environment [14],

which makes it possible to analyze the code and select only the

most important elements that need to be offloaded to the cloud.

The tests conducted, inter alia with the use of face recognition

applications, showed a reduction in the time required for

offloading the required data to the cloud and a reduction

in service execution time as well as lower power usage by

mobile devices. It is an interesting solution for reducing mobile

device load; however, it does not take into account such

factors as the context in which the service is executed. At the

same time, some elements are always offloaded to the cloud,

although in some cases this may not be efficient due to the

service execution time and power consumption considerations.

Therefore, adding to the concept developed the possibility

of using machine learning algorithms that could learn which

elements of the application and when should be offloaded to

the cloud would in our opinion enable the required amount of

data transferred to be reduced even further and mobile device

power consumption to be optimized to a greater degree.

Machine learning is a popular technique used to optimize

energy consumption. It may be applied in large scale systems,

e.g. for data center scheduling [5]. Berral et al. apply super-

vised learning to create models that predict important system

parameters (power consumption levels, CPU loads etc.). The

models are learned from previous system behaviors and they

are used to optimize scheduling decisions. It is a similar

approach to ours, but we target mobile devices and the models

learned are simpler because they only predict a single value

for the computational task performed. Moreover in [5], the

learning process occurs offline.

So far, few studies have been conducted that concern the

analysis of power consumption and possibilities for reducing

it and that would at the same time use the context in which the

mobile device is operating, and machine learning algorithms

that allow for power consumption optimization. One of the

most important articles covering these topics is [15]. In that

article, the authors analyze machine learning algorithms in the

context of power saving in mobile systems. They present a

concept where power saving is possible thanks to the dynamic

adaptation of data transfer and network interface parameters,

which is conducted automatically without user intervention.

It involves the appropriate startup and shutdown of mobile

device network and localization interfaces. The authors also

conducted actual tests for five different user profiles and five

different smartphones using the Android operating system.

Each device was running the Context Logger application,

which logged the context of individual mobile device users to

an external server where the data were analyzed offline using

an algorithm developed by the authors. Those data, combined

with the context in which the device and user were operating,

included details such as the day of the week, location, Wi-

Fi signal strength, 3G signal strength, battery status, CPU

utilization and device motion. The analysis of those data from

a week-long test allowed the evaluation of user behavior,

including the correlation of the need for data offloading with

location. On that basis, certain user behavior patterns were de-

termined that were associated with the context of using mobile

devices and five models were proposed that defined the users’

behavior. At the same time, the authors analyzed five different

machine learning algorithms: Linear Discriminant Analysis,

Linear Logistic Regression, Non-Linear Logistic Regression

with Neural Networks, K-Nearest Neighbor and Support Vec-

tor Machines, which were used in the tests. However, that

analysis only concerned general use and did not take into

account the character of mobile systems and solutions such as

Mobile Cloud Computing. The authors also proposed a model

for mobile device power consumption for devices running the

Android system, using in laboratory the Monsoon Solutions

power monitor device. However, power measurements and

determining the model for a particular device, which is treated

as a whole, exclusively under laboratory conditions does not

answer the question concerning the practical characteristics of

power consumption by communication interfaces of a mobile

device. In this context, our research on power consumption

(e.g. communication interfaces) included not only the mobile

device itself but also individual services executed on it, which

allowed for a more accurate analysis of energy aspects. The

studies that we carried out used the PowerTutor software [16],

which allows for a continuous analysis of power consumption.

Using online analysis instead of predetermining a model under

laboratory conditions (as the authors did [15]) allows for a

better inclusion of the actual context in which the mobile

device is located. The authors [15] carried out a series of

tests that demonstrated the effectiveness of using different

machine learning algorithms to dynamically predict the energy

efficiency of different device interface configurations. Among

other things, they were successful in 90% of cases when

predicting power consumption using support vector machines,

neural networks and k-nearest neighbor algorithms. However,

it appears that such research requires tests on a larger scale

than involving just a few users. For such a small number of

devices, the patterns discovered may not be fully useful and

universal. We believe that when the operation of the entire

device is considered in isolation, without analyzing individual

applications/services and without including the actual context

and, moreover, it is limited to a few predefined user models,

this does not enable power consumption optimization in the

case of real-world mobile applications and services. Studies

conducted by the authors mainly concern the prediction of

energy efficiency of individual interface configurations; we

think that subsequently, this knowledge is not adequately

leveraged. In this respect our studies use power analysis,

710

Authorized licensed use limited to: Politechnika Krakowska. Downloaded on September 01,2020 at 09:56:50 UTC from IEEE Xplore. Restrictions apply.

including the predicted power consumption, to optimize (using

machine learning algorithms) the execution of individual ser-

vices, which allows for the optimization of the entire mobile

device. Conclusions from the analysis of the article described

here were among our motivations to carry out our research and

to develop a completely different, and innovative, approach to

the topic of mobile device energy consumption optimization

with the use of machine learning algorithms.

The issues addressed in wide literature are techniques for

protecting MCC against the cyber attacks. An overview of

types of attacks on MCC is presented in [17], [18]. A compre-

hensive survey and discussion of strengths and weaknesses of

various approaches and corresponding techniques for detecting

attacks and vulnerabilities in MCC are presented in [19].

The surveys describe the problem of security in MCC as

highly challenging. Mostly due to mobility of various and

numerous network nodes. Especially when dealing with a

mobile clouds consisting of heterogeneous client networks,

such as Wireless Sensor Networks and Vehicular Networks,

the security problem becomes more complicated, when the

client networks have different security requirements in terms

of computational complexity, power consumption, and security

levels, which is often the case. Novel security schemes are

being devised as traditional, legacy intrusion detection systems

are not up to the task. In [20] a framework leveraging

a deep learning approach to detect cyberattacks in mobile

cloud environment is proposed. The results are promising,

framework is able to recognize diverse threats with a high

accuracy. Other solution described in [21] involves a multi-

layered intrusion detection system with both feature-based

and profile-based traffic filtration mechanisms. Classification

and clustering techniques are being employed. The security of

MCC platforms is still an open problem. New solutions are

being devised, many of which, similarly to our solution, adopt

machine learning methods. However, the greatest attention is

directed at the systems operating inside the infrastructure of

the cloud, e.g. intrusion detection system, while our solution

is focused on the mobile device.

This research is a continuation of the results published

in our paper [22] where an innovative recommender system

that allows the optimization of the selection of multimedia

services (for converting photos and videos) is presented. The

main goal was to optimize the service execution time. The

system developed allows the selection of multimedia services

offered by different providers locally on the mobile device

or remotely in the cloud. In order to choose the service

execution location, the concept of learning agents is used that

utilizes various machine learning algorithms such as C4.5,

Random Forest and Naı̈ve Bayes. The tests conducted included

the context associated with the type of network connection

(LTE/HSPA/EDGE) and also various methods for converting

photos and videos. The article focuses primarily on optimizing

the service execution time; energy aspects have not been

studied thoroughly. At the same time, the solution developed

only covers a system for recommending choices with respect

to a single type of service (multimedia conversion), which

limits its versatility to some extent.

With respect to using the Mobile Cloud Computing concept,

an important aspect is that the optimization of resources

concerns not only the mobile device but the cloud as well.

In [23], the authors demonstrate that it is possible to optimize

resource usage in MCC by applying common patterns used in

traditional cloud computing.

III. SUPERVISED LEARNING TECHNIQUES IN CONTEXT OF

MOBILE DEVICES

Generally, supervised learning allows us to generate an

approximation of the function f : X → C, which as-

signs labels from set C to objects from set X . To generate

knowledge, a supervised learning algorithm requires labeled

examples that consist of pairs of f arguments and values.

Let us assume that elements of X are described by a set of

attributes A = (a1, a2, . . . , an) where ai : X → Di. Therefore

xA = (a1(x), a2(x), . . . , an(x)) is used instead of x. If the

size of C is small, like in this study, the learning is called

classification, C is the set of classes, and h is called the

classifier.

The supervised learning module obtains Training data,

which is a set {(xA, f(x))}, and generates the hypothesis h,

which is stored in Generated Knowledge. The Problem is xA,

and the Answer is h(xA).

There are many supervised learning methods, which use

various hypothesis representations and various methods of

constructing hypotheses. Three of them are described below.

Naı̈ve Bayes (NB) is a simple probabilistic classifier, which

is a special case of a Bayesian network. Generally, a Bayesian

network is a pair (G,P) where G is a structure graph and P
is a set of local, conditional probability distributions between

variables and their parents. In the case of NB, G is very

simple: the class node c is the parent of every attribute

node a1, a2, ..., an. Learning is a process of calculating a

priori probabilities P (c) and conditional probabilities P (ai|c).
The probability distribution of a class variable, for example

(a1(x), a2(x), . . . , an(x)), is calculated using the following

formula:

P (c(x) = cj) =
P (cj)

∏n
i=1 P (ai(x)|cj)∏n

i=1 P (ai(x))
(1)

C4.5 is a decision tree learning algorithm developed by

Ross Quinlan [24]. The basic idea of learning is as follows:

the tree is learned from examples recursively. If (almost) all

examples in the training data belong to one class, the tree

consisting of the leaf labeled by this class is returned. In the

other case, the best attribute for the test in the root is chosen

(using an entropy measure), training examples are divided

according to the selected attribute values, and the procedure is

called recursively (for every attribute test result with the rest

of attributes and appropriate examples as parameters.)

The random forest algorithm builds an ensemble of decision

trees. To reduce overfitting, trees are trained on subsets of

the training set (selected at random) and using subsets of the

711

Authorized licensed use limited to: Politechnika Krakowska. Downloaded on September 01,2020 at 09:56:50 UTC from IEEE Xplore. Restrictions apply.

TABLE I
COMPARISON OF SUPERVISED LEARNING ALGORITHMS APPLIED IN

MOBILE DEVICES

Learning
algorithm

Learning
speed

Hypothesis
complexity

Readability
to humans

NB Fast Low Poor
C4.5 Medium High Good
Random forest Slow Very high Poor

attribute set (also selected at random) [25]. The decision is

calculated by voting.

In the context of the application considered, these three

algorithms may be compared as follows (see Table I): NB

is the fastest, but it is able to account for dependencies

between attributes. The knowledge represented by probabilities

is difficult to analyze. C4.5 learns more slowly, but the

decision tree may represent any hypothesis. It is also readable

for human experts. Random forest is the slowest algorithm

but exhibits robust prediction results. Trees may represent

complex hypotheses and ensembles make it possible to reduce

overfitting. However, because of a large number of trees, the

knowledge generated is also difficult to analyze.

In reinforcement learning, various techniques are used to

prevent reaching a local optimum. The idea is to explore

the solution space more thoroughly by choosing suboptimal

actions from time to time (e.g. random or not performed

in a given state yet). We decided to use this technique for

supervised learning too because experimental results show that

exploration is useful.

One such method is ε-greedy where the agent selects the

action that it believes has the best long-term effect with

probability 1−ε, and it chooses an action uniformly at random

otherwise. ε ∈ (0, 1) is a tuning parameter. In our experiments

it is constant, but in reinforcement learning it often decreases

with time.

IV. ADAPTIVE CONTEXT-AWARE ENERGY OPTIMIZATION

FOR SERVICES

Let us define the learning agent (Figure 1) as a tuple:

LA = (P,L, TD,K, T, C,R,A,D), (2)

where P is the processing module, L is the learning mod-

ule, TD is training data, K is knowledge learned, T is a

set of computational tasks, C is a set of possible contexts

(battery state, connection, date, etc.), R represents possible

task execution results, A is a set of attributes, which are

used to describe tasks, results and the context, and D is a

set of decisions. The aim of the agent is to return decision

d ∈ D = {d1, d2, . . . dns}, which corresponds to engaging

one of ns services.

Input data for processing module P is a pair x = (t, c) ∈
T × C. This pair describes it with attributes from O ⊂ A,

which yields xO = (o1(x), o2(x), . . . on(x)). Next, using the

knowledge stored in K it selects d ∈ D, which has the

minimum predicted cost. If K is empty, d is randomized.

The decision d is then applied and the task is run using the

corresponding service (e.g. locally or in the mobile cloud).

After the execution, the P module obtains execution results

r ∈ R, which are described by Res = {r1, r2, . . . rm} ⊂ A
attributes (e.g. battery consumption b(x, d), calculation time

ct(x, d)).
The P module stores those results together with xO and

decision d in TD. Therefore the complete example stored in

TD has the form

xA∪D = (o1(x), o2(x), . . . on(x), r1(x, d), r2(x, d), . . .

rm(x, d), d). (3)

The knowledge used to predict R values is trained by the

learning module L using supervised learning algorithms and

TD, and stored in K. The form of the knowledge depends

on the learning algorithm applied. For example, if C4.5 is

used, the knowledge has the form of a decision tree with

leaves representing values of predicted resource usage (time

or battery) and other nodes represent tests on O attributes.

In cases like this, when the learning algorithm performs

classification instead of regression, the predicted attribute must

be discretized. The number of bins has a high impact on

accuracy. However, five bins turned out to be the optimal value

in all our cases.

Using value predictions ri ∈ Res, the processing module

P rates its decisions d ∈ D by calculating predicted expenses

e(x, d):

e(x, d) =
m∑

i=1

wi ∗ ri(x, d), (4)

where wi are weights of the result ri. By choosing the weights,

one sets priorities for the criteria. As a result, the system

is flexible and universal, because it may be adjusted to user

requirements.

The P module selects the decision for which execution is

predicted to be successful and the expense is predicted to be

the lowest. To avoid a local optimum, the ε-greedy strategy

is applied and a suboptimal decision is executed from time to

time.

V. ENERGY-AWARE AND SECURE MOBILE CLOUD

COMPUTING

The main objective of this paper is to provide mechanisms

for energy-aware workload allocation in MCC. However, as

it has been already mentioned this should be accompanied by

solutions that guarantee the maintenance of the expected level

of security. Shared wireless medium, easy physical access to

mobile devices, spontaneous nature of mobile clouds expose

transmitted data for eavesdropping and unauthorized takeover.

Using a computer with a wireless network adapter, anyone

can gain access to an unprotected network. Hence, the outsider

can monitor the network, participate in the communication and

easily launch attacks or cause a malfunction in the proposed

machine learning models for energy efficient workload allo-

cation. Volumetric attacks consisting in generating massive,

additional communication result in quick consumption of

energy resources of a mobile device. On the other hand due

to limitations of mobile devices in terms of computational

712

Authorized licensed use limited to: Politechnika Krakowska. Downloaded on September 01,2020 at 09:56:50 UTC from IEEE Xplore. Restrictions apply.

Adaptive context-aware energy
optimization engine

Learning agent

Date/Time

Processing Module Training
Data

Generated
Knowledge

Learning Module

Training Data

Models

Cloud
Computing

Battery usage
(CPU, network card, ...)

Network
connection

Service

Service

Optimization request

Service choice

Context

Examples

Models

Execution results

Fig. 1. Architecture of the adaptive service choice system

ability, storage and energy complex security algorithms cannot

be applied to protect mobile MCC. Therefore, it is necessary

to balance between the security level and the associated energy

consumption used to mitigate the security risks. Being aware

of those issues we propose to enhance our model to include

the security aspect in decision making process. By extending

the set C of possible contexts and the set of attributes A
from the tuple 2 with additional parameters, we are able

to solve the problem of energy efficient workload allocation

without compromising on security. We consider three types

of security level requirements referring to entities present

in our environment: device, task and resource security level

requirement.

• Device security level requirement refers to overall secu-

rity requirements for a given device utilization. When

confidentiality and data security considerations are a

priority, this parameter should be set to a high value.

• Task security level requirement is attributed to a single

task and its value depends on task’s nature. This allows

for a more fine-grained approach to secure workload

allocation. If the task consists of computations performed

on open data and the correct results are not crucial to

proper operation of the device, the task can easily be

allocated to execute on remote resource. On the other

hand, tasks requiring access to sensitive data, like mes-

sage encryption/decryption, should rarely be offloaded.

• Resource security level requirement corresponds to the

amount of trust accredited to a remote resource. The aim

is to enhance decision making process when more then

one remote service for task execution is available.

Mentioned levels contribute to the set of attributes A.

The equation 4 for calculating predicted expenses used in

Processing Module stays valid. Additionally, the values of

the security parameters need to be adjusted, some external

knowledge source maybe required to asses specific security

level requirements for devices, task and resource types. It

should be emphasized, that the evaluation and adjustment

of aforementioned security levels is out of scope of this

article. What we propose is a straightforward extension of

our original solution to accommodate security requirements

for task offloading scenarios.

VI. EVALUATION

In order to run experiments, software using the architecture

developed was implemented, which makes it possible for a set

of tests to be conducted and detailed results to be generated for

a chosen configuration. The software developed can operate

in two modes: for determining optimal classifier parameters

(Hill Climbing) and for performing a set of tests. Both modes

use the architecture developed, but in the first mode classifier

parameters are modified on the go while the second mode uses

predetermined values of classifier parameters.

All tests carried out consisted of multiple series and each

series comprised a set of rounds. During each round, a set of

tasks were performed (Face Recognition or OCR). After ob-

taining the result for the individual task, the time rt and power

consumption rp were measured (i.e. costs of performing the

task). After each round had been conducted, a classifier was

built on the basis of the knowledge acquired from the previous

and current rounds in the series in question. Those classifier

parameters were established in the process of Hill Climbing. In

the first round (reference round), the task execution location

(cloud or mobile device) was selected randomly. The costs

calculated on the basis of the results of this round were not

used to build a classifier, but to calculate the penalty that was

applied when the task ended in an error. Such a situation could

occur e.g. when the network connection established to execute

the cloud service was disrupted or terminated. Then, instead

of the costs calculated, ri values from the reference round

713

Authorized licensed use limited to: Politechnika Krakowska. Downloaded on September 01,2020 at 09:56:50 UTC from IEEE Xplore. Restrictions apply.

corresponding to this task were used, multiplied by a constant

factor equal to 1.5. After all rounds in the series had been

conducted, all knowledge gathered was deleted. During the

tests carried out, multiple series were conducted in order to

obtain average values for individual rounds.

Two services were used during tests: Face Recognition and

OCR. For the Face Recognition (FR) service, five types of tests

were developed for different input data (with different video

stream parameters such as resolution and video frames). For

the OCR service, five types of test were developed as well for

different input data (with different image parameters such as

resolution and format).

Three mobile devices were used during initial tests: the

Lenovo Tab 2 A7-30D (1.3 GHz CPU, 1 GB RAM) tablet as

well as the Samsung Galaxy Trend Plus (1.2 GHz CPU, 768

MB RAM) and HTC Desire 610 (1.2 GHz CPU, 1 GB RAM)

mobile phones. All devices used the Android 4.4.2 operating

system. The main experiment was conducted using only the

Lenovo Tab 2 A7-30D device. In order to run remote tasks

(Face Recognition and OCR) in the cloud, the AWS Lambda

solution was used.

All experiments were executed using real-world Internet

connections (Wi-Fi and HSDPA/HSUPA). Therefore we were

not able to control connection quality and the results obtained

suffer from relatively high variation. However, such conditions

are similar to real-world applications in which connection

quality may change.

A. Power measurement

The power consumption measurement (estimation) module

was an important element used in power consumption tests

in the process of learning and also an element allowing the

classifier that predicted energy demand to learn. The choice of

the method for measuring or estimating power was preceded

by analysing and testing existing solutions. The tests were

performed for Android 4.4.2, which was used by a large

number of mobile devices at the time (in 2016). The method

selected should work in real time (online), allow measurements

for individual device components (CPU, wireless communi-

cation modules), and should have appropriate measurement

resolution (less than 1% battery consumption). Owing to this

resolution, it is possible to measure the power consumption

of particular applications/services on mobile devices quite

accurately.

The first study concerned power measurement methods

on Android devices. The most commonly used measurement

method is to use a public API (BatteryManager) that makes

it possible to retrieve information about the current power

status of the device. It uses a subscription mechanism, which

prevents obtaining information about battery status regularly

and continuous real-time measurements. At the same time,

the maximum resolution of measurements is 1%, which may

sometimes not be sufficient to measure the difference in power

consumption between application/service launches in different

contexts. It is possible to use an advanced API (via the an-
droid.os.BatteryManager class), which allows measurements

with a resolution better than 1%, but this is feasible only

for a few devices with the Summit SMB347 and MAX17050

battery charger integrated circuits, which are present in Nexus

series devices (such as Google Nexus 6 and 9), so this is

not a solution which could be widely used on a variety of

Android devices. There is also the non-public BatteryInfo
Android API, which makes it possible to obtain low-level

information about power consumption. However, it requires

android.permission.BATTERY STATS permissions, which are

reserved for applications built into the system and cannot be

easily used by user applications. Another option for obtaining

data on power consumption is to use the dumpsys batterystats
command and visualize the results in the Battery Stats and

Battery Historian programs. This enables data to be obtained

from system logs, including information on power consump-

tion by the entire device as well as its individual components.

The downside of this solution is that it does not work online

and that it only shows the results on a PC. Another solution

(Carat [26]) allows for the monitoring and analysis of data

(on an external server) on power consumption from multiple

mobile devices simultaneously and for detecting anomalies in

the operation of individual applications. However, this solution

does not allow local power measurement in real time (online).

There are also closed applications available, such as Battery

Doctor, Battery Saver 2017 and GSam Battery Monitor, which

can be used for the monitoring and management of battery

consumption on mobile devices. Still, due to the lack of their

source codes or libraries, it was not possible to use them in

the solution developed. An alternative to software solutions is

the physical measurement of battery power consumption. This

is the most accurate method, but it usually requires gaining

access to mobile device internals and the use of additional

measuring equipment. Moreover, such solutions only allow

for the measurement of total power consumption of the device

without obtaining any results for individual components such

as CPU or wireless communication modules. Because of the

nature of this measurement, this solution will never be widely

used. Examples in this category are BattOr [27] (open-source),

and the commercial Monsoon Mobile Device Power Monitor

solution.

Our further research focused on the estimation of power

consumption by mobile devices. Solutions using this method

make it possible to obtain real-time results with a high

measurement resolution. The most popular and widely used

solution based on estimation is the PowerTutor program,

which uses three basic energy characteristics of mobile de-

vice components. For a thorough analysis of the capabilities

of this solution and its potential further use, we used the

source code of this program to develop our own library for

estimating power consumption. The solution developed allows

for estimating power consumption of individual mobile device

components (such as CPU and communication modules) with

an error in the range of 1%–5% [16], but it was designed

for older devices and does not support new LTE wireless

communication modules. Finally, the latest method for es-

timating mobile device power consumption uses the power

714

Authorized licensed use limited to: Politechnika Krakowska. Downloaded on September 01,2020 at 09:56:50 UTC from IEEE Xplore. Restrictions apply.

profiles provided by device manufacturers. However, not all

mobile devices have these profiles defined correctly which

leads to problems with using this method. At the same time, no

libraries have been developed that use this solution. In order

to compare this method with PowerTutor, we conducted tests

using the Lenovo Tab 2 A7-30D device. Preliminary results

showed that for this device, there are no major differences

between the two solutions when it comes to estimating the

power consumption of the CPU and wireless communication

modules.

The analysis of available solutions demonstrates that only

estimation methods work on most devices and meet basic

requirements, i.e. they work online, allow for measuring indi-

vidual components of a mobile device and have the appropriate

measurement resolution. While being aware of its limitations,

we have decided to use our own library developed with the use

of the PowerTutor source code. However, with the device used

in tests, this solution allowed for a fairly accurate estimation of

the power consumed by the CPU and wireless communication

modules. In future research concerning new Android mobile

devices, we are going to use a solution based on power profiles,

which has been pre-tested by us. This will require developing

a library for analysing the power profile.xml system file and

calculating the power consumption of individual components

of a mobile device.

B. Power consumption during learning process

In the first stage of proper research, the energy cost of

building classifiers was measured (including the operation

of the Weka library [28], [29]), which made it possible to

assess whether it was not excessive in relation to the potential

savings resulting from the use of the solution developed.

Tests were performed for the three classifiers used (J48 –

Weka’s C4.5 implementation, Random Forest, Naı̈ve Bayes)

using the Lenovo Tab 2 A7-30D tablet. For conducting tests,

artificial training data were generated, containing 1,000 ran-

dom examples, which corresponds to executing 1,000 tasks

using the system developed. Every classifier was tested with

different percentages (25%, 50%, 75% and 100%)1 of the

training data set used. Tests for specific percentage values

were repeated 100 times and the final result was averaged.

In Figure 2, battery consumption (as a percentage) during the

process of building individual classifiers is shown. The results

demonstrate that power consumption for all classifiers is low

(up to 0.4% of battery charge) and does not significantly affect

the ability to carry out the tests of the services developed.

In addition, the data set used for these tests was very large

and in practice when it comes Face Recognition and OCR

service tests, the amount of data that had to be processed

by the classifier was much smaller (usually from 100 to 200

examples). The lowest power consumption is associated with

the Naı̈ve Bayes classifier and this is due to the fact that

Naı̈ve Bayes exhibits linear time complexity, which results in

1For example, a 25% test meant that to build the classifier, 250 examples
were used from the input data.

Fig. 2. Battery consumption while building a classifier

less stress on the device at the time of building the classifier

(compared to the remaining classifiers used) and thus less

energy expenditure.

C. Optimization

The final stage consisted of conducting the tests concerning

the possibility of optimizing power consumption (and addi-

tionally execution time) using different classifiers. During the

tests related to optimizing power consumption, the weights of

the adaptive algorithm were set to wp = 90 and wt = 10. The

Lenovo Tab 2 A7-30D mobile device was used during test.

Each test carried out consisted of 20 series, each series of

nine rounds, and each round comprised:

• seven tasks executed with the Wi-Fi connection available

(9 Mb/s), including four tasks of the Face Recognition

type and three tasks of the OCR type;

• seven tasks executed with the HSDPA/HSUPA connection

available, including four tasks of the Face Recognition

type and three tasks of the OCR type.

Figure 3 shows a comparison of power consumption opti-

mization results for all three classifiers and for services per-

formed without using machine learning methods (exclusively

locally on the mobile device and exclusively in the cloud).

It can be seen that for the J48 classifier power consumption

decreases in subsequent rounds until it begins to oscillate

around a single value of 17,500 mJ. The result of the t-

Student test for this classifier (the p-value) equals 0.000018,

which means that average values for the first and last rounds

are statistically significantly different. For the Random Forest

classifier power consumption decreases in subsequent rounds

until it reaches a value of about 18,000 mJ. The result of the t-

Student test for this classifier (the p-value) equals 0.00000017,

which means that average values for the first and last rounds

are statistically significantly different. For the Naı̈ve Bayes

classifier power consumption between the first and last rounds

does decrease, but it is not a steady or large reduction. The

result of the t-Student test for this classifier (the p-value)

equals 0.1, which means that average values for the first and

last rounds are not statistically significantly different.

715

Authorized licensed use limited to: Politechnika Krakowska. Downloaded on September 01,2020 at 09:56:50 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Comparison of power consumption optimization for all three classifiers
(J48, Random Forest and Naı̈ve Bayes) and for services performed without
using machine learning methods (exclusively locally on the mobile device and
exclusively in the cloud)

It can be noticed that classifiers based on decision trees

(J48 and Random Forest) perform much better than the Naı̈ve

Bayes classifier. They achieve almost the same optimization

levels and the result of the t-Student test for both classifiers

(the p-value) equals 0.3741, which means that average values

for the last round for the J48 and Random Forest classifiers are

not statistically significantly different. However, the Random

Forest classifier achieves the final power consumption stage

faster. The worst result was achieved by the Naı̈ve Bayes

classifier. The result of the t-Student test for the Naı̈ve Bayes

and J48 classifiers (the p-value) equals 0.0021, which means

that average values for the last round for those classifiers are

statistically significantly different. In cases where the service

was executed in a single location (in the cloud or locally), the

results were worse than in cases where classifiers and machine

learning were used. However, the result for running the service

exclusively in the cloud was only slightly worse than for the

Naı̈ve Bayes classifier.

In order to compare our software with already existing

solutions, we analyzed various MCC solutions. Many of

those (such as MALMOS [30], COMET [31] and COSMOS

[32]) do not take into account energy aspects at all in their

operation. Only a few (such as AIOLOS [33], CACTSE [34],

Cuckoo [35], EMCO [36], IC-Cloud [37], MAUI [38] and

ThinkAir [39]) account for energy aspects and only the IC-

Cloud solution uses machine learning algorithms to optimize

the operation of applications/services. However, almost all of

the solutions analyzed (including IC-Cloud) are not being

developed any further or there is no access to their source

codes. It was only possible to find source codes for two

solutions: AIOLOS and Cuckoo. Unfortunately, both of these

solutions use old software development kit versions (such as

Eclipse and the ADT plugin instead of Android Studio). In

the case of AIOLOS, we were able to configure and build

a sample project, but when running the sample (using the

Androsgi plugin), the application closed and reported an error.

The code was analyzed, but it was not possible to determine

what caused the error. For the second solution – Cuckoo, it was

possible to run the sample application. However, comparing

this solution with our system proved difficult due to the fact

that Cuckoo lacked machine learning mechanisms and used

completely different solutions in terms of the computing cloud

– the server ran on an EC2 instance and it was not possible

to use the AWS Lambda service.

VII. CONCLUSIONS

Multiple studies have been carried out recently concerning

the possibilities of reducing the power consumption of mobile

devices, primarily in the area of optimizing the functioning of

their screens, processors or wireless communication modules.

However, our analysis concerning existing solutions revealed

that there are no systems that use machine learning for

optimizing power consumption on mobile devices using MCC.

In this article, we present an original concept for an adaptive

system enabling the optimization of mobile device power

consumption and at the same time taking into account the

context of the device’s operation. The use of machine learning

algorithms in our solution allowed for the optimization of

power consumption on the mobile device. Presented model can

be easily extended to take security measures into considera-

tion, making it an energy-aware and security-aware complex

solution. The use of machine learning methods to securely

allocate the tasks in mobile environment makes this a novel

approach. Also, our concept distinguishes itself from other

research by targeting endpoint mobile devices, rather then

cloud infrastructure, as most present solution do.

Two services were used in the tests: Face Recognition and

OCR. They were implemented on a mobile device with the

Android operating system, with the ability to run them in the

AWS Lambda compute cloud. The experiments carried out

demonstrated that the adaptation algorithm developed made it

possible to reduce power consumption for the J48 classifier

by 41%, for the Random Forest classifier by 48% and for the

Naı̈ve Bayes classifier by 17%. Despite the relatively large

standard deviation for the Naı̈ve Bayes classifier, tests showed

that the solutions developed can significantly reduce the power

consumption of mobile devices. During the tests, we also

found out that the power consumption of the system developed

during the learning process itself is very low and does not

significantly affect the operation of the mobile device.

Our research shows that it is possible to create a system us-

ing adaptive algorithms based on machine learning that enables

efficient learning and making increasingly better decisions.

This allows for power consumption optimization on mobile

devices. In further tests, we would like to address, among

other things, the possibility of using distributed learning. Local

models would be learned on mobile devices like it is the

case now; however, part of the data collected would also be

sent to the cloud where global models could be learned from

aggregated data provided by many users. Such global models

could subsequently be sent to mobile devices and allow them

to use global knowledge locally.

716

Authorized licensed use limited to: Politechnika Krakowska. Downloaded on September 01,2020 at 09:56:50 UTC from IEEE Xplore. Restrictions apply.

ACKNOWLEDGMENT

The research presented in this paper was supported by funds

from the Polish Ministry of Science and Higher Education

allocated to the AGH University of Science and Technol-

ogy. Joanna Kolodziej’s and Pawel Szynkiewicz’s work was

supported in part by the European Commission, under Grant

Agreement no. 833456. We would like to thank Karol Wojcik

and Marcin Bogusz for their assistance with implementation

and testing.

REFERENCES

[1] P. Nawrocki and A. Sliwa, “Quality of experience in the context of
mobile applications,” Computer Science, vol. 17, no. 3, p. 371, 2016.

[2] T. H. Noor, S. Zeadally, A. Alfazi, and Q. Z. Sheng, “Mobile cloud com-
puting: Challenges and future research directions,” Journal of Network
and Computer Applications, vol. 115, pp. 70 – 85, 2018.

[3] A. Malhotra, S. K. Dhurandher, M. Gupta, and B. Kumar, “Emcloud: A
hierarchical volunteer cloud with explicit mobile devices,” International
Journal of Communication Systems, vol. 31, no. 17, 2018.

[4] R. Sutton and A. Barto, Reinforcement Learning: An Introduction. The
MIT Press, March 1998.

[5] J. L. Berral, Í. Goiri, R. Nou, F. Julià, J. Guitart, R. Gavaldà, and
J. Torres, “Towards energy-aware scheduling in data centers using
machine learning,” in Proc. of the 1st Int. Conference on Energy-Efficient
Computing and Networking. ACM, 2010, pp. 215–224.

[6] B. Sniezynski, “A strategy learning model for autonomous agents based
on classification,” International Journal of Applied Mathematics and
Computer Science, vol. 25, no. 3, pp. 471–482, 2015.

[7] J. L. Berral, Í. Goiri, R. Nou, F. Julià, J. O. Fitó, J. Guitart, R. Gavaldà,
and J. Torres, “Toward energy-aware scheduling using machine learn-
ing,” in Energy-efficient distributed computing systems. Wiley, 2012,
pp. 215–244.

[8] J. Flinn and M. Satyanarayanan, “Energy-aware adaptation for mobile
applications,” SIGOPS Oper. Syst. Rev., vol. 33, no. 5, pp. 48–63, 1999.

[9] N. Vallina-Rodriguez and J. Crowcroft, “Energy management techniques
in modern mobile handsets.” IEEE Communications Surveys and Tuto-
rials, vol. 15, no. 1, pp. 179–198, 2013.

[10] G. Bhatia, R. Mahajan, and S. K. Khatri, “A study for improving energy
efficiency in mobile devices,” in International Conference on Infocom
Technologies and Unmanned Systems (ICTUS), 2017, pp. 588–592.

[11] A. Meneses-Viveros, E. Hernández-Rubio, S. Mendoza, J. Rodrı́guez,
and A. B. M. Quintos, “Energy saving strategies in the design of mobile
device applications,” Sustainable Computing: Informatics and Systems,
vol. 19, pp. 86 – 95, 2018.

[12] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?” Computer, vol. 43, pp. 51–56,
2010.

[13] S. Yang, D. Kwon, H. Yi, Y. Cho, Y. Kwon, and Y. Paek, “Techniques to
minimize state transfer costs for dynamic execution offloading in mobile
cloud computing,” IEEE Transactions on Mobile Computing, vol. 13,
no. 11, pp. 2648–2660, Nov 2014.

[14] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
Elastic execution between mobile device and cloud,” in Proceedings of
the Sixth Conference on Computer Systems, ser. EuroSys ’11. New
York, NY, USA: ACM, 2011, pp. 301–314.

[15] B. K. Donohoo, C. Ohlsen, S. Pasricha, Y. Xiang, and C. Anderson,
“Context-aware energy enhancements for smart mobile devices,” IEEE
Transactions on Mobile Computing, vol. 13, no. 8, pp. 1720–1732, 2014.

[16] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao,
and L. Yang, “Accurate online power estimation and automatic battery
behavior based power model generation for smartphones,” in Pro-
ceedings of the Eighth IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis, ser. CODES/ISSS
’10. New York, NY, USA: ACM, 2010, pp. 105–114.

[17] M. B. Mollah, M. Azad, and A. Vasilakos, “Security and privacy
challenges in mobile cloud computing: Survey and way ahead,” Journal
of Network and Computer Applications, vol. 84, pp. 34–54, 04 2017.

[18] R. Roman, J. Lopez, and M. Mambo, “Mobile edge computing, fog et
al.: A survey and analysis of security threats and challenges,” Future
Generation Computer Systems, vol. 78, pp. 680 – 698, 2018.

[19] A. N. Khan, M. L. Mat Kiah, S. U. Khan, and S. A. Madani, “Towards
secure mobile cloud computing: A survey,” Future Gener. Comput. Syst.,
vol. 29, no. 5, p. 1278–1299, Jul. 2013.

[20] K. K. Nguyen, D. T. Hoang, D. Niyato, P. Wang, D. Nguyen, and
E. Dutkiewicz, “Cyberattack detection in mobile cloud computing: A
deep learning approach,” in 2018 IEEE Wireless Communications and
Networking Conference (WCNC), April 2018, pp. 1–6.

[21] S. Dey, Q. Ye, and S. Sampalli, “A machine learning based intrusion de-
tection scheme for data fusion in mobile clouds involving heterogeneous
client networks,” Information Fusion, vol. 49, 09 2019.

[22] P. Nawrocki, B. Sniezynski, and J. Czyzewski, “Learning agent for a
service-oriented context-aware recommender system in a heterogeneous
environment,” Computing and Informatics, vol. 35, no. 5, 2016.

[23] P. Nawrocki and W. Reszelewski, “Resource usage optimization in
mobile cloud computing,” Computer Communications, vol. 99, pp. 1
– 12, 2017.

[24] J. Quinlan, C4.5: Programs for Machine Learning. Morgan Kaufmann,
1993.

[25] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
Oct. 2001.

[26] A. J. Oliner, A. P. Iyer, I. Stoica, E. Lagerspetz, and S. Tarkoma, “Carat:
Collaborative energy diagnosis for mobile devices,” in Proceedings of
the 11th ACM Conference on Embedded Networked Sensor Systems, ser.
SenSys ’13. New York, NY, USA: ACM, 2013, pp. 10:1–10:14.

[27] A. Schulman, T. Schmid, P. Dutta, and N. Spring, “Demo: Phone power
monitoring with battor,” in ACM Mobicom, 2011.

[28] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H.
Witten, “The weka data mining software: An update,” SIGKDD Explor.
Newsl., vol. 11, no. 1, pp. 10–18, Nov. 2009.

[29] N. A. Azeez, O. J. Asuzu, S. Misra, A. Adewumi, R. Ahuja, and
R. Maskeliunas, Comparative Evaluation of Machine Learning Algo-
rithms for Network Intrusion Detection Using Weka. Singapore:
Springer Singapore, 2018, pp. 195–208.

[30] H. Eom, R. Figueiredo, H. Cai, Y. Zhang, and G. Huang, “Malmos: Ma-
chine learning-based mobile offloading scheduler with online training,”
in Proceedings of the 2015 3rd IEEE International Conference on Mo-
bile Cloud Computing, Services, and Engineering, ser. MOBILECLOUD
’15. IEEE Computer Society, 2015, pp. 51–60.

[31] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen,
“Comet: Code offload by migrating execution transparently,” in Pro-
ceedings of the 10th USENIX Conference on Operating Systems Design
and Implementation, ser. OSDI’12. Berkeley, CA, USA: USENIX
Association, 2012, pp. 93–106.

[32] C. Shi, K. Habak, P. Pandurangan, M. Ammar, M. Naik, and E. Zegura,
“Cosmos: Computation offloading as a service for mobile devices,” in
Proceedings of the 15th ACM International Symposium on Mobile Ad
Hoc Networking and Computing, ser. MobiHoc ’14. New York, NY,
USA: ACM, 2014, pp. 287–296.

[33] T. Verbelen, P. Simoens, F. De Turck, and B. Dhoedt, “Aiolos: Mid-
dleware for improving mobile application performance through cyber
foraging,” J. Syst. Softw., vol. 85, no. 11, pp. 2629–2639, Nov. 2012.

[34] W. Qing, H. Zheng, W. Ming, and L. Haifeng, “Cactse: Cloudlet aided
cooperative terminals service environment for mobile proximity content
delivery,” China Communications, vol. 10, no. 6, pp. 47–59, June 2013.

[35] R. Kemp, N. Palmer, T. Kielmann, and H. Bal, Cuckoo: A Computation
Offloading Framework for Smartphones. Springer, 2012, pp. 59–79.

[36] H. Flores and S. Srirama, “Adaptive code offloading for mobile cloud
applications: Exploiting fuzzy sets and evidence-based learning,” in
Proceeding of the Fourth ACM Workshop on Mobile Cloud Computing
and Services, ser. MCS ’13. ACM, 2013, pp. 9–16.

[37] C. Shi, P. Pandurangan, K. Ni, J. Yang, M. Ammar, M. Naik, and
E. Zegura, “Ic-cloud: Computation offloading to an intermittently-
connected cloud,” Tech. Rep., 2013.

[38] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: Making smartphones last longer with
code offload,” in Proceedings of the 8th International Conference on
Mobile Systems, Applications, and Services, ser. MobiSys ’10. New
York, NY, USA: ACM, 2010, pp. 49–62.

[39] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in 2012 Proceedings IEEE INFOCOM, 2012,
pp. 945–953.

717

Authorized licensed use limited to: Politechnika Krakowska. Downloaded on September 01,2020 at 09:56:50 UTC from IEEE Xplore. Restrictions apply.

Copy protected with Online-PDF-No-Copy.com

https://online-pdf-no-copy.com/?utm_source=signature

