Published June 10, 2020 | Version 1.0.0
Dataset Open

Simulation of an imaging calorimeter to demonstrate GarNet on FPGA

  • 1. ICEPP, University of Tokyo
  • 2. CERN

Description

This data set is an output of a simulation of electrons and pions shot at a chunk of an imaging calorimeter. It is used in the case study for GarNet-on-FPGA, documented in arXiv:2008.03601.

Each HDF5 file contains the following arrays:

           Name  | Shape              |   Description

  • cluster | (10000, 128, 4) | Samples for training and inference. Outermost dimension is the event (cluster). Each cluster has maximum 128 hits, each of which has four features: x, y, z, and energy. The coordinates of the hits are in cm. The energy is in GeV. The x and y coordinates are relative to the seed hit, while the z coordinate is with respect to the calorimeter front face.
  • size     | (10000)             | Number of hits in each cluster. The cluster array is zero-padded when the cluster size is below 128.
  • truth_pid | (10000) | Identity of the primary particle (0: electron, 1: pion).
  • truth_energy | (10000) | True energy of the primary particle.
  • raw | (10000, 4375, 2) | Raw data (actual output of the simulation). For each event (outermost dimension), hit energy and primary fraction (innermost dimension indices 0 and 1) are given for each of the 4375 sensors. Energy is in MeV.
  • coordinates | (4375, 3) | The x, y, and z coordinates of the 4375 sensors, to be used to interpret the raw data.

See the paper for the details of the simulation.

Files

Files (8.3 GB)

Name Size Download all
md5:5b0564d43257d58f053d5bb1e80dc6d2
165.2 MB Download
md5:d9016a5f1ca209f8908b524880d026a1
165.6 MB Download
md5:324882b68c483573a7f3dfd5e5cf0c94
165.2 MB Download
md5:e1490c88f34602ef1a3d3f5723939824
166.0 MB Download
md5:d9dc726785bde1db7b94aed7592ce686
165.6 MB Download
md5:42103ec8368bd47395049f2a3aebc7b7
165.8 MB Download
md5:6c12bc77c8f0de7ac860e7fa0c6e0988
165.6 MB Download
md5:b5680e5536966d75ad9f0d48cb2f755b
165.2 MB Download
md5:c2dea71b68aa3a6312fc4192a523c077
165.8 MB Download
md5:a1f62fe254190ea92efa0e2bb513ed32
165.9 MB Download
md5:69612f1c9c58c47d293ccd73b2216a39
165.6 MB Download
md5:577b1e89ad26227d539fa5a3988e3e18
165.2 MB Download
md5:6e4e7af01ac4468e8f0d98bfbc4c2902
165.9 MB Download
md5:ca2939b65366c84549ed1c82e6053a7b
165.4 MB Download
md5:44cebcb10bc30afdaface3748c1a1100
166.1 MB Download
md5:e189988d5394061c8b5348c42238497a
165.2 MB Download
md5:3b4c88dec12b285a62b073371c1168d2
165.3 MB Download
md5:03a1dbb9fc5f27d84e37172b95122e45
165.3 MB Download
md5:e9ca57b69b8a5c6062235a40f3ae9ce3
165.8 MB Download
md5:1de3c37ba24f68f22c67d0036947d8a9
165.3 MB Download
md5:db1bbbae5e3223df534f65d43bae14c1
165.6 MB Download
md5:0c9f39ef373d88ba9958125133755019
165.8 MB Download
md5:8226bde8e31d2ab97db2fa82d898873e
166.1 MB Download
md5:72bd5b1be1ee2fae9f5bf1c40cfab920
165.4 MB Download
md5:79e8616f88370f128916b042036df700
165.8 MB Download
md5:78f952d14fb42148001804ee8882c6fe
164.8 MB Download
md5:2381bec031bc8565b901166746242c3b
165.3 MB Download
md5:4b43d91353b72c96f61ed15f63827f82
165.6 MB Download
md5:fe27376f687be28b0f3b4087b451285f
165.4 MB Download
md5:c5bbf77ce5f209155eae46e84043ce39
165.9 MB Download
md5:4ba6fcee8f0e3ecf4313119ecda632c6
165.9 MB Download
md5:972e41ae565a75ec87a8096f3ff0ca3b
165.4 MB Download
md5:26f1af16a101c373da69823f66bfe6e9
165.7 MB Download
md5:01a55e852fd003412e2725bcc5bf13fe
165.6 MB Download
md5:b159e8326a56c8a9f9fe0871a16d4c7b
166.2 MB Download
md5:19b9f2c9b85f5e4eeb260eb8b7be07ba
165.9 MB Download
md5:3a8760276e46bb407da301012ca3b4f7
165.4 MB Download
md5:ac38318c7cf1d36243150150245c272d
165.8 MB Download
md5:c4ca89b66af296bb52187a53d158bf60
165.5 MB Download
md5:4a424c459f699d87153b04c1c0c3791a
165.7 MB Download
md5:04b5e6f5454eaab4d64a554dd470cec4
165.7 MB Download
md5:145bc5a9e4f30b6ace394ca7808d0cdf
165.1 MB Download
md5:efa84efebd62b3474384902996b0ee8b
165.1 MB Download
md5:9126bf80073a0274d37c94ffd55efc2e
165.3 MB Download
md5:1b0210ee0f1bd12def15d828df391ee6
165.9 MB Download
md5:81bc0d3c7cf7fb56b4cdb98eda5febff
165.6 MB Download
md5:728b137ea1973db2d8341ed0c5d47d11
388.8 kB Download
md5:8e9311b842d69674d01c69f05d6a7abc
165.6 MB Download
md5:76edcc41a1a8e97523d54b61f873e078
165.7 MB Download
md5:8cf62891348bfc8abd8b68c0e4e92672
165.1 MB Download
md5:035f66acc70cc791cce1ac22cdbb4d38
165.8 MB Download

Additional details

Related works

Is cited by
Preprint: arXiv:2008.03601 (arXiv)

Funding

mPP – machine learning for Particle Physics 772369
European Commission