Published May 26, 2020 | Version v2
Dataset Open

Nonhuman Primate Reaching with Multichannel Sensorimotor Cortex Electrophysiology

Description

General Description. This dataset consists of:

  1. The threshold crossing times of extracellularly and simultaneously recorded spikes, sorted into units (up to five, including a "hash" unit), along with sorted waveform snippets, and,
  2. The x,y position of the fingertip of the reaching hand and the x,y position of reaching targets (both sampled at 250 Hz).

The behavioral task was to make self-paced reaches to targets arranged in a grid (e.g. 8x8) without gaps or pre-movement delay intervals. One monkey reached with the right arm (recordings made in the left hemisphere); The other reached with the left arm (right hemisphere). In some sessions recordings were made from both M1 and S1 arrays (192 channels); in most sessions M1 recordings were made alone (96 channels).

Data from two primate subjects are included: 37 sessions from monkey 1 ("Indy", spanning about 10 months) and 10 sessions from monkey 2 ("Loco", spanning about 1 month), for a total of ~ 20,000 reaches and 6,500 reaches from monkeys 1 and 2, respectively.

Possible uses. These data are ideal for training BCI decoders, in particular because they are not segmented into trials. We expect that the dataset will be valuable for researchers who wish to design improved models of sensorimotor cortical spiking or provide an equal footing for comparing different BCI decoders. Other uses could include analyses of the statistics of arm kinematics, spike noise-correlations or signal-correlations, or for exploring the stability or variability of extracellular recording over sessions.

Variable names. Each file contains data in the following format. In the below, n refers to the number of recording channels, u refers to the number of sorted units, and k refers to the number of samples.

  • chan_names - n x 1
    • A cell array of channel identifier strings, e.g. "M1 001".
  • cursor_pos - k x 2
    • The position of the cursor in Cartesian coordinates (x, y), mm.
  • finger_pos - k x 3 or k x 6
    • The position of the working fingertip in Cartesian coordinates (z, -x, -y), as reported by the hand tracker in cm. Thus the cursor position is an affine transformation of fingertip position using the following matrix:
      \(\begin{pmatrix} 0 & 0 \\ -10 & 0 \\ 0 & -10 \end{pmatrix}\)
      Note that for some sessions finger_pos includes the orientation of the sensor as well; the full state is thus: (z, -x, -y, azimuth, elevation, roll).
  • target_pos - k x 2
    • The position of the target in Cartesian coordinates (x, y), mm.
  • t - k x 1
    • The timestamp corresponding to each sample of the cursor_pos, finger_pos, and target_pos, seconds.
  • spikes - n x u
    • A cell array of spike event vectors. Each element in the cell array is a vector of spike event timestamps, in seconds. The first unit (u1) is the "unsorted" unit, meaning it contains the threshold crossings which remained after the spikes on that channel were sorted into other units (u2, u3, etc.) For some sessions spikes were sorted into up to 2 units (i.e. u=3); for others, 4 units (u=5).
  • wf - n x u
    • A cell array of spike event waveform "snippets". Each element in the cell array is a matrix of spike event waveforms. Each waveform corresponds to a timestamp in "spikes". Waveform samples are in microvolts.

Decoder Results. These data were used to fit decoder models, as reported in Makin, et al [1]. To aid comparisons to other decoders, we include performance summaries (for each session, decoder, bin-width, etc.) in the file refh_results.csv, containing the following columns:

  • session - a session identifier, e.g. "indy_20160407_02"
  • monkey - one of, "indy" or "loco"
  • num_neurons - total number of features used in the decoder
  • num_training_samples - number of samples (at the specified bin-width) used to train the decoder (sequential, from file start)
  • num_testing_samples - number of samples used to evaluate the decoder (sequential, until file end)
  • kinematic_axis - one of, "posx", "posy", "velx", "vely", "accx" or "accy"
  • bin_width - one of, "16", "32", "64" or "128"
  • decoder - one of, "regression", "KF_observed", "KF_static", "KF_dynamic", "UKF", "rEFH_static" or "rEFH_dynamic"
  • rsq - coefficient of determination, R2
  • snr - Signal to noise ratio, SNR := -10 log10(1 - R2)

Videos. For some sessions, we recorded screencasts of the stimulus presentation display using a dedicated hardware video grabber. These screencasts are thus a faithful representation of the stimuli and feedback presented to the monkey and are available for the following sessions:

Supplements. The raw broadband neural recordings that the spike trains in this dataset were extracted from are available for the following sessions:

Contact  Information. We would be delighted to hear from you if you find this dataset valuable, especially if it leads to publication. Corresponding author: J. E. O'Doherty <joeyo@neuroengineer.com>.

Citation.

@misc{ODoherty:2017,  author = {O'{D}oherty, Joseph E. and Cardoso, Mariana M. B. and Makin, Joseph G. and Sabes, Philip N.},  title  = {Nonhuman Primate Reaching with Multichannel Sensorimotor Cortex electrophysiology},  doi    = {10.5281/zenodo.788569},  url    = {https://doi.org/10.5281/zenodo.788569},  month  = may,  year   = {2017} }

Publications making use of this dataset.

  1. Makin, J. G., O'Doherty, J. E., Cardoso, M. M. B. & Sabes, P. N. (2018). Superior arm-movement decoding from cortex with a new, unsupervised-learning algorithm. J Neural Eng. 15(2): 026010. doi:10.1088/1741-2552/aa9e95
  2. Ahmadi, N., Constandinou, T. G., & Bouganis, C.-S. (2018). Spike Rate Estimation Using Bayesian Adaptive Kernel Smoother (BAKS) and Its Application to Brain Machine Interfaces. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 2018, pp. 2547-2550. doi:10.1109/EMBC.2018.8512830
  3. Balasubramanian, M., Ruiz, T., Cook, B., Bhattacharyya, S., Prabhat, Shrivastava, A. & Bouchard K. (2018). Optimizing the Union of Intersections LASSO (UoILASSO) and Vector Autoregressive (UoIVAR) Algorithms for Improved Statistical Estimation at Scale. arXiv Preprint. arXiv:1808.06992
  4. Ahmadi, N., Constandinou, T. G., & Bouganis, C.-S. (2019). Decoding Hand Kinematics from Local Field Potentials Using Long Short-Term Memory (LSTM) Network. arXiv Preprint. arXiv:1901.00708
  5. Clark, D. G., Livezey, J. A., & Bouchard, K. E. (2019). Unsupervised Discovery of Temporal Structure in Noisy Data with Dynamical Components Analysis. arXiv Preprint. arXiv:1905.09944
  6. Shaikh, S., So, R., Sibindi, T., Libedinsky, C., & Basu, A. (2019). Towards Intelligent Intra-cortical BMI (i2BMI): Low-power Neuromorphic Decoders that outperform Kalman Filters. bioRxiv Preprint. 772988. doi:10.1101/772988
  7. Clark, D. G., Livezey, J. A., & Bouchard, K. E. (2019). Unsupervised Discovery of Temporal Structure in Noisy Data with Dynamical Components Analysis. Advances in Neural Information Processing Systems (NeurIPS) 32.
  8. Keshtkaran, M. R., & Pandarinath, C. (2019). Enabling hyperparameter optimization in sequential autoencoders for spiking neural data. Advances in Neural Information Processing Systems (NeurIPS) 32.
  9. Ahmadi, N., Constandinou, T. G., & Bouganis, C.-S. (2019). End-to-End Hand Kinematic Decoding from LFPs Using Temporal Convolutional Network. 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS), Nara, Japan, pp. 1-4. doi:10.1109/biocas.2019.8919131
  10. Bose, S. K., Acharya, J., & Basu, A. (2019). Is my Neural Network Neuromorphic? Taxonomy, Recent Trends and Future Directions in Neuromorphic Engineering. 2019 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, pp. 1522-1527. doi:10.1109/IEEECONF44664.2019.9048891
  11. Sachdeva, P. S., Bhattacharyya, S., & Bouchard, K. E. (2019). Sparse, Predictive, and Interpretable Functional Connectomics with UoILasso, 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, pp. 1965-1968. doi:10.1109/EMBC.2019.8856316
  12. Shaikh, S., So, R., Sibindi, T., Libedinsky, C., & Basu, A. (2019). Towards Intelligent Intracortical BMI (i2BMI): Low-Power Neuromorphic Decoders That Outperform Kalman Filters. IEEE Transactions on Biomedical Circuits and Systems. 13(6): 1615-1624. doi:10.1109/TBCAS.2019.2944486
  13. Sachdeva, P. S, Livezey, J. A, Dougherty, M. E., Gu, B.-M., Berke, J. D, & Bouchard, K. E. (2020). Accurate Inference in Parametric Models Reshapes Neuroscientific Interpretation and Improves Data-driven Discovery. bioRxiv Preprint. 2020.04.10.036244. doi:10.1101/2020.04.10.036244
  14. Ahmadi, N., Constandinou, T. G., & Bouganis, C.-S. (2020). Inferring entire spiking activity from local field potentials with deep learning. bioRxiv Preprint. 2020.05.02.074104. doi:10.1101/2020.05.02.074104
  15. Ahmadi, N., Constandinou, T. G., & Bouganis. C.-S. (2020). Impact of referencing scheme on decoding performance of LFP-based brain-machine interface. bioRxiv Preprint. 2020.05.03.075218 doi:10.1101/2020.05.03.075218
  16. Ahmadi, N., Constandinou, T. G., & Bouganis, C.-S. (2020). Robust and accurate decoding of hand kinematics from entire spiking activity using deep learning. bioRxiv Preprint. 2020.05.07.083063 doi:10.1101/2020.05.07.083063
  17. Ahmadi, N., Constandinou, T. G., & Bouganis, C.-S. (2020). Improved Spike-based Brain-Machine Interface Using Bayesian Adaptive Kernel Smoother and Deep Learning. TechRxiv Preprint. doi:10.36227/techrxiv.12383600.v1
  18. Balasubramanian, M., Ruiz, T., Cook, B., Prabhat, Bhattacharyya, S., Shrivastava, A. & Bouchard K. (2020). Scaling of Union of Intersections for Inference of Granger Causal Networks from Observational Data. Proceeding of the 34th IEEE International Parallel & Distributed Processing Symposium (IPDPS). New Orleans, LA, USA, pp. 264-273. doi: 10.1109/IPDPS47924.2020.00036
  19. Keshtkaran, M. R., Sedler, A. R., Chowdhury, R. H., Tandon, R., Basrai, D., Nguyen, S. L, Sohn, H., Jazayeri, M., Miller, L. E., & Pandarinath, C. (2021). A large-scale neural network training framework for generalized estimation of single-trial population dynamics. bioRxiv Preprint. 2021.01.13.426570. doi:10.1101/2021.01.13.426570
  20. Ahmadi, N., Constandinou, T. G., & Bouganis. C.-S. (2021). Impact of referencing scheme on decoding performance of LFP-based brain-machine interface. J Neural Eng. 18(1): 016028. doi:10.1088/1741-2552/abce3c
  21. Ahmadi, N., Constandinou, T. G., & Bouganis, C.-S. (2021). Robust and accurate decoding of hand kinematics from entire spiking activity using deep learning. J. Neural Eng. 18(2): 026011. doi:10.1088/1741-2552/abde8a
  22. Savolainen, O. W. (2021). The Significance of Neural Inter-Frequency Correlations. Research Square Preprint (v1). doi:10.21203/rs.3.rs-329644/v1
  23. Sachdeva, P. S., Livezey, J. A., Dougherty, M. E., Gu, B.-M., Berke, J. D., & Bouchard, K. E. (2021). Improved inference in coupling, encoding, and decoding models and its consequence for neuroscientific interpretation. Journal of Neuroscience Methods. 358: 109195. doi:10.1016/j.jneumeth.2021.109195
  24. Sani, O. G., Pesaran, B., & Shanechi., M. M. (2021). Where is all the nonlinearity: flexible nonlinear modeling of behaviorally relevant neural dynamics using recurrent neural networks. bioRxiv Preprint. 2021.09.03.458628. doi:10.1101/2021.09.03.458628
  25. Yang, S.-H., Huang, J.-W., Huang, C.-J., Chiu, P.-H., Lai, H.-Y., & Chen, Y.-Y. (2021). Selection of Essential Neural Activity Timesteps for Intracortical Brain–Computer Interface Based on Recurrent Neural Network. Sensors. 21(19): 6372. doi:10.3390/s21196372
  26. Schimel, M., Kao, T.-C., Jensen, K.T., & Hennequin, G. (2021). iLQR-VAE : control-based learning of input-driven dynamics with applications to neural data. bioRxiv Preprint. 2021.10.07.463540. doi:10.1101/2021.10.07.463540
  27. Li, Y., Qi, Y., Wang, Y., Wang, Y., Xu, K., & Pan, G. (2021). Robust neural decoding by kernel regression with Siamese representation learning. J Neural Eng. 18(5): 056062. doi:10.1088/1741-2552/ac2c4e
  28. Pei, F., Ye, J., Zoltowski, D., Wu, A., Chowdhury, R. H., Sohn, H., O'Doherty, J. E., Shenoy, K. V., Kaufman, M. T., Churchland, M., Jazayeri, M., Miller, L. E., Pillow, J., Park, I. M., Dyer, E. L., & Pandarinath, C. (2021). Neural Latents Benchmark '21: Evaluating latent variable models of neural population activity. arXiv Preprint. arXiv:2109.04463
  29. Savolainen, O.W. (2021). The significance of neural inter-frequency power correlations. Sci. Rep. 11, 23190. doi:10.1038/s41598-021-02277-0
  30. Jensen, K. T., Kao, T.-C., Stone, J. T., & Hennequin, G. (2021). Scalable Bayesian GPFA with automatic relevance determination and discrete noise models. bioRxiv Preprint. 2021.06.03.446788. doi:10.1101/2021.06.03.44678
  31. Valencia, D., Mercier, P. P, & Alimohammad, A. (2022). In vivo neural spike detection with adaptive noise estimation. J Neural Eng. 19: 046018. doi:10.1088/1741-2552/ac8077
  32. Keshtkaran, M. R., Sedler, A. R., Chowdhury, R. H., Tandon, R., Basrai, D., Nguyen, S. L., Sohn, H., Jazayeri, M., Miller, L. E., & Pandarinath, C. (2022). A large-scale neural network training framework for generalized estimation of single-trial population dynamics. Nat Methods. 19, 1572-1577. doi:10.1038/s41592-022-01675-0
  33. Qi, Y., Zhu, X., Xu, K., Ren, F., Jiang, H., Zhu, J., Zhang, J., Pan, G., & Wang, Y. (2022). Dynamic Ensemble Bayesian Filter for Robust Control of a Human Brain-Machine Interface. arXiv Preprint. arXiv:2204.11840
  34. Qi, Y., Zhu, X., Xu, K., Ren, F., Jiang, H., Zhu, J., Zhang, J., Pan, G., & Wang, Y. (2022). Dynamic Ensemble Bayesian Filter for Robust Control of a Human Brain-Machine Interface. IEEE Transactions on Biomedical Engineering. 69(12): 3825-3835. doi:10.1109/TBME.2022.3182588
  35. Zhu, X., Qi, Y., Pan, G., Wang, Y. (2022). Tracking Functional Changes in Nonstationary Signals with Evolutionary Ensemble Bayesian Model for Robust Neural DecodingAdvances in Neural Information Processing Systems (NeurIPS) 35.
  36. Ye, J., Collinger, J. L., Wehbe, L., & Gaunt, R. (2023). Neural Data Transformer 2: Multi-Context Pretraining for Neural Spiking Activity. bioRxiv Preprint. 2023.09.18.558113. doi:10.1101/2023.09.18.558113

History.

  • Version 2 - added CSV of results from Makin et al.
  • Version 1 - initial release.

Notes

This research was supported by the Congressionally Directed Medical Research Program (W81XWH-14-1-0510). JEO was supported by fellowship #2978 from the Paralyzed Veterans of America. JGM was supported by a fellowship from the Swartz Foundation.

Files

refh_results.csv

Files (24.0 GB)

Name Size Download all
md5:63ab3e2e55652fb5709eb024642111cf
418.1 MB Download
md5:cee905e1021535626a442748e5612643
663.3 MB Download
md5:1f7b4d964f931411789d1aa2ff10f018
590.1 MB Download
md5:ae16e46a6f1614103b451c17674ff3eb
817.2 MB Download
md5:e5155b431035f32ee37c81915db755fc
376.5 MB Download
md5:02546235653357a08430b5dd8d5d1265
923.5 MB Download
md5:cfbeaffc1717e2dd11ee8c5ac6f7a297
1.1 GB Download
md5:c33d5fff31320d709d23fe445561fb6e
909.0 MB Download
md5:9aa921f0788f6ccd32a1b8808c18eabd
144.0 MB Download
md5:de58797d649bdf2bec589c074ee991d2
1.1 GB Download
md5:197413a5339630ea926cbd22b8b43338
382.2 MB Download
md5:ef6a95c5a1a8d2126b90f5be0505e398
106.6 MB Download
md5:5587d27f46efa3c09a7f589f2addf3a9
124.0 MB Download
md5:788a0fc779bdfffa8388b1108e1d1ce5
109.2 MB Download
md5:c7f84c83f10494b34ec836ed2b3c9d58
120.3 MB Download
md5:af9b8bacc1079e5a1edb2bd6eadecfb8
126.9 MB Download
md5:87bd8c05d60200a5e0d86fd8e88748e2
117.9 MB Download
md5:30a8dc9229306d81288e8ae39c9e4942
100.7 MB Download
md5:5ea300952642e0fc54245144499db9bb
84.0 MB Download
md5:8e19ada5feee4cdef47a0ec66503076f
107.7 MB Download
md5:6426f0fe91a9a90f66cbb17c44e20c0d
138.7 MB Download
md5:90dc409a749b3c0da72b901d2b5d106e
158.4 MB Download
md5:8f92ff163bc409134af6ebd161dec826
107.0 MB Download
md5:d8cf4a2866f56b4c46513ff9fe5ddaf4
139.3 MB Download
md5:7a1bff8e115e7e58eae7cbc63a72ed98
129.9 MB Download
md5:cc8e198ae6330338af584d9e1204800d
126.7 MB Download
md5:13589b4c7cfad158e5a1aebd2d71f6e3
110.3 MB Download
md5:3b5f2c35eecc5175c526869d50f2eada
111.7 MB Download
md5:bae4f5b76c50e2e2aed775e6d2482fc3
128.2 MB Download
md5:ce33b61b7870e635bea5cab7601d27c3
177.1 MB Download
md5:b984a86fd30417fa8301136102caf2ad
106.2 MB Download
md5:41f420af06373b456ede45da0536a10f
97.5 MB Download
md5:ad57bf06ac505e4d70ae7100c721b8aa
112.7 MB Download
md5:a3ce046e0b67b489d19e34a31232d512
139.7 MB Download
md5:ea1721fefe443420a356b4f93f5bb731
152.0 MB Download
md5:3d77802c59e3e4ebe6778326cfc68c0a
171.8 MB Download
md5:2790b1c869564afaa7772dbf9e42d784
208.8 MB Download
md5:4cae63b58c4cb9c8abd44929216c703b
1.1 GB Download
md5:e051a2ddfeb67f31395a8f934b6a04bf
1.3 GB Download
md5:3f410a56706563b4ce5584c5b5c83cf2
1.6 GB Download
md5:739b70762d838f3a1f358733c426bb02
779.5 MB Download
md5:ec480664e7da8c6be0ba8ee709eecf8b
1.3 GB Download
md5:bba2889a6ea20e74c8a9054e97a80dd4
1.2 GB Download
md5:47dc8d717ac4e46af31a696422d83ed7
1.4 GB Download
md5:79d99cd6b8db25ba0420a906350a44ff
1.6 GB Download
md5:47342da09f9c950050c9213c3df38ea3
902.2 MB Download
md5:ccbba097e02fa300ab5a87b27702f337
2.0 GB Download
md5:235fba6f4913e46a56764fb80faee510
728.8 kB Preview Download

Additional details

References

  • 1. Makin, J. G., O'Doherty, J. E., Cardoso, M. M. B. & Sabes, P. N. (2018). Superior arm-movement decoding from cortex with a new, unsupervised-learning algorithm. J Neural Eng. 15(2): 026010. doi:10.1088/1741-2552/aa9e95