Published May 26, 2020 | Version v2
Dataset Open

Nonhuman Primate Reaching with Multichannel Sensorimotor Cortex Electrophysiology

Description

General Description. This dataset consists of:

  1. The threshold crossing times of extracellularly and simultaneously recorded spikes, sorted into units (up to five, including a "hash" unit), along with sorted waveform snippets, and,
  2. The x,y position of the fingertip of the reaching hand and the x,y position of reaching targets (both sampled at 250 Hz).

The behavioral task was to make self-paced reaches to targets arranged in a grid (e.g. 8x8) without gaps or pre-movement delay intervals. One monkey reached with the right arm (recordings made in the left hemisphere); The other reached with the left arm (right hemisphere). In some sessions recordings were made from both M1 and S1 arrays (192 channels); in most sessions M1 recordings were made alone (96 channels).

Data from two primate subjects are included: 37 sessions from monkey 1 ("Indy", spanning about 10 months) and 10 sessions from monkey 2 ("Loco", spanning about 1 month), for a total of ~ 20,000 reaches and 6,500 reaches from monkeys 1 and 2, respectively.

Possible uses. These data are ideal for training BCI decoders, in particular because they are not segmented into trials. We expect that the dataset will be valuable for researchers who wish to design improved models of sensorimotor cortical spiking or provide an equal footing for comparing different BCI decoders. Other uses could include analyses of the statistics of arm kinematics, spike noise-correlations or signal-correlations, or for exploring the stability or variability of extracellular recording over sessions.

Variable names. Each file contains data in the following format. In the below, n refers to the number of recording channels, u refers to the number of sorted units, and k refers to the number of samples.

  • chan_names - n x 1
    • A cell array of channel identifier strings, e.g. "M1 001".
  • cursor_pos - k x 2
    • The position of the cursor in Cartesian coordinates (x, y), mm.
  • finger_pos - k x 3 or k x 6
    • The position of the working fingertip in Cartesian coordinates (z, -x, -y), as reported by the hand tracker in cm. Thus the cursor position is an affine transformation of fingertip position using the following matrix:
      \(\begin{pmatrix} 0 & 0 \\ -10 & 0 \\ 0 & -10 \end{pmatrix}\)
      Note that for some sessions finger_pos includes the orientation of the sensor as well; the full state is thus: (z, -x, -y, azimuth, elevation, roll).
  • target_pos - k x 2
    • The position of the target in Cartesian coordinates (x, y), mm.
  • t - k x 1
    • The timestamp corresponding to each sample of the cursor_pos, finger_pos, and target_pos, seconds.
  • spikes - n x u
    • A cell array of spike event vectors. Each element in the cell array is a vector of spike event timestamps, in seconds. The first unit (u1) is the "unsorted" unit, meaning it contains the threshold crossings which remained after the spikes on that channel were sorted into other units (u2, u3, etc.) For some sessions spikes were sorted into up to 2 units (i.e. u=3); for others, 4 units (u=5).
  • wf - n x u
    • A cell array of spike event waveform "snippets". Each element in the cell array is a matrix of spike event waveforms. Each waveform corresponds to a timestamp in "spikes". Waveform samples are in microvolts.

Decoder Results. These data were used to fit decoder models, as reported in Makin, et al [1]. To aid comparisons to other decoders, we include performance summaries (for each session, decoder, bin-width, etc.) in the file refh_results.csv, containing the following columns:

  • session - a session identifier, e.g. "indy_20160407_02"
  • monkey - one of, "indy" or "loco"
  • num_neurons - total number of features used in the decoder
  • num_training_samples - number of samples (at the specified bin-width) used to train the decoder (sequential, from file start)
  • num_testing_samples - number of samples used to evaluate the decoder (sequential, until file end)
  • kinematic_axis - one of, "posx", "posy", "velx", "vely", "accx" or "accy"
  • bin_width - one of, "16", "32", "64" or "128"
  • decoder - one of, "regression", "KF_observed", "KF_static", "KF_dynamic", "UKF", "rEFH_static" or "rEFH_dynamic"
  • rsq - coefficient of determination, R2
  • snr - Signal to noise ratio, SNR := -10 log10(1 - R2)

Videos. For some sessions, we recorded screencasts of the stimulus presentation display using a dedicated hardware video grabber. These screencasts are thus a faithful representation of the stimuli and feedback presented to the monkey and are available for the following sessions:

Supplements. The raw broadband neural recordings that the spike trains in this dataset were extracted from are available for the following sessions:

Contact  Information. We would be delighted to hear from you if you find this dataset valuable, especially if it leads to publication. Corresponding author: J. E. O'Doherty <joeyo@neuroengineer.com>.

Citation.

@misc{ODoherty:2017,  author = {O'{D}oherty, Joseph E. and Cardoso, Mariana M. B. and Makin, Joseph G. and Sabes, Philip N.},  title  = {Nonhuman Primate Reaching with Multichannel Sensorimotor Cortex electrophysiology},  doi    = {10.5281/zenodo.788569},  url    = {https://doi.org/10.5281/zenodo.788569},  month  = may,  year   = {2017} }

Publications making use of this dataset.

  1. Makin, J. G., O'Doherty, J. E., Cardoso, M. M. B. & Sabes, P. N. (2018). Superior arm-movement decoding from cortex with a new, unsupervised-learning algorithm. J Neural Eng. 15(2): 026010. doi:10.1088/1741-2552/aa9e95
  2. Ahmadi, N., Constandinou, T. G., & Bouganis, C.-S. (2018). Spike Rate Estimation Using Bayesian Adaptive Kernel Smoother (BAKS) and Its Application to Brain Machine Interfaces. 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 2018, pp. 2547-2550. doi:10.1109/EMBC.2018.8512830
  3. Balasubramanian, M., Ruiz, T., Cook, B., Bhattacharyya, S., Prabhat, Shrivastava, A. & Bouchard K. (2018). Optimizing the Union of Intersections LASSO (UoILASSO) and Vector Autoregressive (UoIVAR) Algorithms for Improved Statistical Estimation at Scale. arXiv Preprint. arXiv:1808.06992
  4. Sachdeva, P. S., Bhattacharyya, S., & Bouchard, K. E. (2019). Sparse, Predictive, and Interpretable Functional Connectomics with UoILasso, 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, pp. 1965-1968. doi:10.1109/EMBC.2019.8856316
  5. Ahmadi, N., Constandinou, T. G., & Bouganis, C.-S. (2019). End-to-End Hand Kinematic Decoding from LFPs Using Temporal Convolutional Network. 2019 IEEE Biomedical Circuits and Systems Conference (BioCAS), Nara, Japan, pp. 1-4. doi:10.1109/biocas.2019.8919131
  6. Bose, S. K., Acharya, J., & Basu, A. (2019). Is my Neural Network Neuromorphic? Taxonomy, Recent Trends and Future Directions in Neuromorphic Engineering. 2019 53rd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, pp. 1522-1527. doi:10.1109/IEEECONF44664.2019.9048891
  7. Shaikh, S., So, R., Sibindi, T., Libedinsky, C., & Basu, A. (2019). Towards Intelligent Intra-cortical BMI (i2BMI): Low-power Neuromorphic Decoders that outperform Kalman Filters. bioRxiv Preprint. 772988. doi:10.1101/772988
  8. Keshtkaran, M. R., & Pandarinath, C. (2019). Enabling hyperparameter optimization in sequential autoencoders for spiking neural data. Advances in Neural Information Processing Systems (NeurIPS) 32.
  9. Clark, D. G., Livezey, J. A., & Bouchard, K. E. (2019). Unsupervised Discovery of Temporal Structure in Noisy Data with Dynamical Components Analysis. arXiv Preprint. arXiv:1905.09944
  10. Shaikh, S., So, R., Sibindi, T., Libedinsky, C., & Basu, A. (2019). Towards Intelligent Intracortical BMI (i2BMI): Low-Power Neuromorphic Decoders That Outperform Kalman Filters. IEEE Transactions on Biomedical Circuits and Systems. 13(6): 1615-1624. doi:10.1109/TBCAS.2019.2944486
  11. Ahmadi, N., Constandinou, T. G., & Bouganis, C.-S. (2019). Decoding Hand Kinematics from Local Field Potentials Using Long Short-Term Memory (LSTM) Network. arXiv Preprint. arXiv:1901.00708
  12. Balasubramanian, M., Ruiz, T., Cook, B., Prabhat, Bhattacharyya, S., Shrivastava, A. & Bouchard K. (2020). Scaling of Union of Intersections for Inference of Granger Causal Networks from Observational Data. Proceeding of the 34th IEEE International Parallel & Distributed Processing Symposium (IPDPS). New Orleans, LA, USA, pp. 264-273. doi: 10.1109/IPDPS47924.2020.00036
  13. Bose, S. K., Acharya, J. & Basu, A. (2020). Is my neural network neuromorphic? Taxonomy, recent trends and future directions in neuromorphic engineering. arXiv PreprintarXiv:2002.11945
  14. Ahmadi, N., Constandinou, T. G., & Bouganis, C.-S. (2020). Inferring entire spiking activity from local field potentials with deep learning. bioRxiv Preprint. 2020.05.02.074104. doi:10.1101/2020.05.02.074104
  15. Ahmadi, N., Constandinou, T. G., & Bouganis, C.-S. (2020). Improved Spike-based Brain-Machine Interface Using Bayesian Adaptive Kernel Smoother and Deep Learning. TechRxiv Preprint. doi:10.36227/techrxiv.12383600.v1
  16. Ahmadi, N., Constandinou, T. G., & Bouganis, C.-S. (2020). Robust and accurate decoding of hand kinematics from entire spiking activity using deep learning. bioRxiv Preprint. 2020.05.07.083063 doi:10.1101/2020.05.07.083063
  17. Ahmadi, N., Constandinou, T. G., & Bouganis. C.-S. (2020). Impact of referencing scheme on decoding performance of LFP-based brain-machine interface. bioRxiv Preprint. 2020.05.03.075218 doi:10.1101/2020.05.03.075218
  18. Ahmadi, N., Constandinou, T. & Bouganis, C. (2020). Inferring entire spiking activity from local field potentials. Scientific reports. 11. doi:10.1038/s41598-021-98021-9
  19. Sachdeva, P. S, Livezey, J. A, Dougherty, M. E., Gu, B.-M., Berke, J. D, & Bouchard, K. E. (2020). Accurate Inference in Parametric Models Reshapes Neuroscientific Interpretation and Improves Data-driven Discovery. bioRxiv Preprint. 2020.04.10.036244. doi:10.1101/2020.04.10.036244
  20. Pei, F., Ye, J., Zoltowski, D., Wu, A., Chowdhury, R. H., Sohn, H., O'Doherty, J. E., Shenoy, K. V., Kaufman, M. T., Churchland, M., Jazayeri, M., Miller, L. E., Pillow, J., Park, I. M., Dyer, E. L., & Pandarinath, C. (2021). Neural Latents Benchmark '21: Evaluating latent variable models of neural population activity. arXiv Preprint. arXiv:2109.04463
  21. Jensen, K. T., Kao, T.-C., Stone, J. T., & Hennequin, G. (2021). Scalable Bayesian GPFA with automatic relevance determination and discrete noise models. bioRxiv Preprint. 2021.06.03.446788. doi:10.1101/2021.06.03.44678
  22. Savolainen, O.W. (2021). The significance of neural inter-frequency power correlations. Sci. Rep. 11, 23190. doi:10.1038/s41598-021-02277-0
  23. Schimel, M., Kao, T.-C., Jensen, K.T., & Hennequin, G. (2021). iLQR-VAE : control-based learning of input-driven dynamics with applications to neural data. bioRxiv Preprint. 2021.10.07.463540. doi:10.1101/2021.10.07.463540
  24. Li, Y., Qi, Y., Wang, Y., Wang, Y., Xu, K., & Pan, G. (2021). Robust neural decoding by kernel regression with Siamese representation learning. J Neural Eng. 18(5): 056062. doi:10.1088/1741-2552/ac2c4e
  25. Savolainen, O. W. (2021). The Significance of Neural Inter-Frequency Correlations. Research Square Preprint (v1). doi:10.21203/rs.3.rs-329644/v1
  26. Sani, O. G., Pesaran, B., & Shanechi., M. M. (2021). Where is all the nonlinearity: flexible nonlinear modeling of behaviorally relevant neural dynamics using recurrent neural networks. bioRxiv Preprint. 2021.09.03.458628. doi:10.1101/2021.09.03.458628
  27. Yang, S.-H., Huang, J.-W., Huang, C.-J., Chiu, P.-H., Lai, H.-Y., & Chen, Y.-Y. (2021). Selection of Essential Neural Activity Timesteps for Intracortical Brain–Computer Interface Based on Recurrent Neural Network. Sensors. 21(19): 6372. doi:10.3390/s21196372
  28. Sachdeva, P. S., Livezey, J. A., Dougherty, M. E., Gu, B.-M., Berke, J. D., & Bouchard, K. E. (2021). Improved inference in coupling, encoding, and decoding models and its consequence for neuroscientific interpretation. Journal of Neuroscience Methods. 358: 109195. doi:10.1016/j.jneumeth.2021.109195
  29. Ahmadi, N., Constandinou, T. G., & Bouganis. C.-S. (2021). Impact of referencing scheme on decoding performance of LFP-based brain-machine interface. J Neural Eng. 18(1): 016028. doi:10.1088/1741-2552/abce3c
  30. Ahmadi, N., Constandinou, T. G., & Bouganis, C.-S. (2021). Robust and accurate decoding of hand kinematics from entire spiking activity using deep learning. J. Neural Eng. 18(2): 026011. doi:10.1088/1741-2552/abde8a
  31. Keshtkaran, M. R., Sedler, A. R., Chowdhury, R. H., Tandon, R., Basrai, D., Nguyen, S. L, Sohn, H., Jazayeri, M., Miller, L. E., & Pandarinath, C. (2021). A large-scale neural network training framework for generalized estimation of single-trial population dynamics. bioRxiv Preprint. 2021.01.13.426570. doi:10.1101/2021.01.13.426570
  32. Qi, Y., Zhu, X., Xu, K., Ren, F., Jiang, H., Zhu, J., Zhang, J., Pan, G., & Wang, Y. (2022). Dynamic Ensemble Bayesian Filter for Robust Control of a Human Brain-Machine Interface. IEEE Transactions on Biomedical Engineering. 69(12): 3825-3835. doi:10.1109/TBME.2022.3182588
  33. Keshtkaran, M. R., Sedler, A. R., Chowdhury, R. H., Tandon, R., Basrai, D., Nguyen, S. L., Sohn, H., Jazayeri, M., Miller, L. E., & Pandarinath, C. (2022). A large-scale neural network training framework for generalized estimation of single-trial population dynamics. Nat Methods. 19, 1572-1577. doi:10.1038/s41592-022-01675-0
  34. Savolainen, O. W. (2022). Hardware-efficient data compression in wireless intracortical brain-machine interfaces. PhD Dissertationdoi:10.25560/105363
  35. Savolainen, O. W., Zhang, Z., Feng, P. & Constandinou, T. G. (2022). Hardware-Efficient Compression of Neural Multi-Unit Activity. bioRxiv Preprint. 2022.03.25.485863 doi:10.1101/2022.03.25.485863
  36. Savolainen, O. W., Zhang, Z. & Constandinou, T. G. (2022). Ultra low power, event-driven data compression of Multi-Unit activity. bioRxiv Preprint. 2022.11.24.517853 doi:10.1101/2022.11.24.517853
  37. Meng, R., Luo, T. & Bouchard, K. (2022). Compressed Predictive Information Coding. arXiv Preprint. arXiv:2203.02051
  38. Li, Y., Zhu, X., Qi, Y. & Wang, Y. (2022). Revealing unexpected complex encoding but simple decoding mechanisms in motor cortex via separating behaviorally relevant neural signals. bioRxiv Preprint. doi:10.1101/2022.11.13.515644
  39. Ahmadi, N., Adiono, T., Purwarianti, A., Constandinou, T. G. & Bouganis, C.-S. (2022). Improved spike-based brain-machine interface using Bayesian adaptive kernel smoother and deep learning. IEEE Access. 10: 29341-29356. doi:10.1109/access.2022.3159225
  40. Zhu, X., Qi, Y., Pan, G., Wang, Y. (2022). Tracking Functional Changes in Nonstationary Signals with Evolutionary Ensemble Bayesian Model for Robust Neural DecodingAdvances in Neural Information Processing Systems (NeurIPS) 35.
  41. Savolainen, O. W., Zhang, Z., Feng, P. & Constandinou, T. G. (2022). Hardware-Efficient Compression of Neural Multi-Unit Activity. IEEE Access. 10: 117515-117529. doi:10.1109/access.2022.3219441
  42. Qi, Y., Zhu, X., Xu, K., Ren, F., Jiang, H., Zhu, J., Zhang, J., Pan, G., & Wang, Y. (2022). Dynamic Ensemble Bayesian Filter for Robust Control of a Human Brain-Machine Interface. arXiv Preprint. arXiv:2204.11840
  43. Valencia, D., Mercier, P. P, & Alimohammad, A. (2022). In vivo neural spike detection with adaptive noise estimation. J Neural Eng. 19: 046018. doi:10.1088/1741-2552/ac8077
  44. Zhang, Z., Feng, P., Oprea, A. & Constandinou, T. G. (2023). Calibration-free and hardware-efficient neural spike detection for brain machine interfaces. IEEE transactions on biomedical circuits and systems. 17(4): 725-740. doi:10.1109/TBCAS.2023.3278531
  45. Biyan, Z., Sun, P. & Basu, A. (2023). Combining SNNs with filtering for efficient neural decoding in implantable brain-machine interfaces. Neuromorphic Computing and Engineering. 5. doi:10.1088/2634-4386/adba82
  46. Zhang, Z. (2023). Real-time neural signal processing and low-power hardware co-design for wireless implantable brain machine interfaces. PhD Dissertation. doi:10.25560/108113
  47. Zhou, B., Sun, P. V. & Basu, A. (2023). Combining SNNs with filtering for efficient neural decoding in implantable brain-machine interfaces. arXiv Preprint. arXiv:XXXX
  48. Song, C. Y. & Shanechi, M. M. (2023). Unsupervised learning of stationary and switching dynamical system models from Poisson observations. Journal of neural engineering. 20(6). doi:10.1088/1741-2552/ad038d
  49. Bono, M. (2023). Time robustness of deep learning models for real-time neural decoding of arm movement. PhD Dissertation. doi:XXXX
  50. Azabou, M., Arora, V., Ganesh, V., Mao, X., Nachimuthu, S., Mendelson, M. J., Richards, B., Perich, M. G., Lajoie, G. & Dyer, E. L. (2023). A unified, scalable framework for neural population decoding. arXiv Preprint. arXiv:XXXX
  51. Yik, J., Berghe, K., Blanken, D. d., Bouhadjar, Y., Fabre, M., Hueber, P., Ke, W., Khoei, M. A., Kleyko, D., Pacik-Nelson, N., Pierro, A., Stratmann, P., Sun, P. V., Tang, G., Wang, S., Zhou, B., Ahmed, S. H., Joseph, G. V., Leto, B., Micheli, A., Mishra, A. K., Lenz, G., Sun, T., Ahmed, Z., Akl, M., Anderson, B., Andreou, A. G., Bartolozzi, C., Basu, A., Bogdan, P., Bohte, S., Buckley, S., Cauwenberghs, G., Chicca, E., Corradi, F., Croon, G., Danielescu, A., Daram, A., Davies, M., Demirag, Y., Eshraghian, J., Fischer, T., Forest, J., Fra, V., Furber, S., Furlong, P. M., Gilpin, W., Gilra, A., Gonzalez, H. A., Indiveri, G., Joshi, S., Karia, V., Khacef, L., Knight, J. C., Kriener, L., Kubendran, R., Kudithipudi, D., Liu, S., Liu, Y., Ma, H., Manohar, R., Margarit-Taulé, J. M., Mayr, C., Michmizos, K., Muir, D. R., Neftci, E., Nowotny, T., Ottati, F., Ozcelikkale, A., Panda, P., Park, J., Payvand, M., Pehle, C., Petrovici, M. A., Posch, C., Renner, A., Sandamirskaya, Y., Schaefer, C. J. S., Schaik, A., Schemmel, J., Schmidgall, S., Schuman, C., Seo, J., Sheik, S., Shrestha, S. B., Sifalakis, M., Sironi, A., Stewart, K., Stewart, M., Stewart, T. C., Timcheck, J., Tömen, N., Urgese, G., Verhelst, M., Vineyard, C. M., Vogginger, B., Yousefzadeh, A., Zohora, F. T., Frenkel, C. & Reddi, V. J. (2023). NeuroBench: A framework for benchmarking neuromorphic computing algorithms and systems. arXiv Preprint. arXiv:XXXX
  52. Zhang, Z. & Constandinou, T. G. (2023). Firing-rate-modulated spike detection and neural decoding co-design. Journal of neural engineering. 20(3). doi:10.1088/1741-2552/accece
  53. Ye, J., Collinger, J. L., Wehbe, L., & Gaunt, R. (2023). Neural Data Transformer 2: Multi-Context Pretraining for Neural Spiking Activity. bioRxiv Preprint. 2023.09.18.558113. doi:10.1101/2023.09.18.558113
  54. Abbaspourazad, H., Erturk, E., Pesaran, B. & Shanechi, M. (2023). Dynamical flexible inference of nonlinear latent structures in neural population activity. bioRxiv Preprint. doi:XXXX
  55. Asahina, T., Shimba, K., Kotani, K. & Jimbo, Y. (2023). Improving the accuracy of decoding monkey brain-machine interface data by estimating the state of unobserved cell assemblies. Journal of neuroscience methods. 385(109764): 109764. doi:10.1016/j.jneumeth.2022.109764
  56. Meghanath, G., Jimenez, B. & Makin, J. G. (2023). Inferring population dynamics in macaque cortex. Journal of neural engineering. 20(5). doi:10.1088/1741-2552/ad0651
  57. Abbaspourazad, H., Erturk, E., Pesaran, B. & Shanechi, M. M. (2024). Dynamical flexible inference of nonlinear latent factors and structures in neural population activity. Nature biomedical engineering. 8(1): 85-108. doi:10.1038/s41551-023-01106-1
  58. Valencia, D. (2024). Towards Autonomous Brain-Computer Interfaces: Approaches, Design, and Implementation. PhD Dissertation. doi:XXXX
  59. Vasilache, A., Krausse, J., Knobloch, K. & Becker, J. (2024). Hybrid spiking neural networks for low-power intra-cortical brain-machine interfaces. arXiv Preprint. arXiv:XXXX
  60. Weng, Y., Qi, Y., Wang, Y. & Pan, G. (2024). Neuromorphic model-based neural decoders for brain-computer interfaces: a comparative study. doi:10.1109/biocas61083.2024.10798332
  61. Martis, L., Leone, G., Raffo, L. & Meloni, P. (2024). Low-power FPGA-based spiking neural networks for real-time decoding of intracortical neural activity. IEEE sensors journal. 24(24): 42448-42459. doi:10.1109/jsen.2024.3487021
  62. Oganesian, L. L., Sani, O. G. & Shanechi, M. (2024). Spectral learning of shared dynamics between generalized-linear processes. Neural Information Processing Systems. 37: 89150-89183.
  63. Tasca, M. (2024). Time-Robust and Energy-Efficient Decoder for Real-Time Neural Decoding of Primary Motor Cortex Activity. PhD Dissertation. doi:XXXX
  64. Wang, Y., Wang, Z. & Liu, S. (2024). Leveraging recurrent neural networks for predicting motor movements from primate motor cortex neural recordings. arXiv Preprint. arXiv:XXXX
  65. Liu, T., Gygax, J., Rossbroich, J., Chua, Y., Zhang, S. & Zenke, F. (2024). Decoding finger velocity from cortical spike trains with recurrent spiking neural networks. arXiv Preprint. arXiv:XXX
  66. Schulz, A., Vetter, J., Gao, R., Morales, D., Lobato-Rios, V., Ramdya, P., Gonçalves, P. J. & Macke, J. H. (2024). Modeling conditional distributions of neural and behavioral data with masked variational autoencoders. bioRxiv Preprint. doi:10.1101/2024.04.19.590082
  67. Sani, O. G., Pesaran, B. & Shanechi, M. M. (2024). Dissociative and prioritized modeling of behaviorally relevant neural dynamics using recurrent neural networks. Nature Neuroscience. 27(10): 2033-2045. doi:10.1038/s41593-024-01731-2
  68. Kumar, A., Frank, L. M. & Bouchard, K. E. (2024). Identifying feedforward and feedback controllable subspaces of neural population dynamics. arXiv Preprint. arXiv:XXXX
  69. McCart, J. D., Sedler, A. R., Versteeg, C., Mifsud, D., Rigotti-Thompson, M. & Pandarinath, C. (2024). Diffusion-based generation of neural activity from disentangled latent Codes. arXiv Preprint. arXiv:XXXX
  70. Bouchard, K. & Kumar, A. (2024). Feedback controllability is a normative theory of neural population dynamics. Research Square. doi:10.21203/rs.3.rs-4102129/v1
  71. Yang, S., Huang, C. & Huang, J. (2024). Increasing robustness of intracortical brain-computer interfaces for recording condition changes via data augmentation. Computer methods and programs in biomedicine. 251(108208): 108208. doi:10.1016/j.cmpb.2024.108208
  72. Wang, C., Yin, M., Liang, F. & Wang, X. (2024). A robust and high accurate method for hand kinematics decoding from neural populations. doi:10.1007/978-981-99-8546-3\_20
  73. Mohan, V., Tay, W. P. & Basu, A. (2025). Towards neuromorphic compression based neural sensing for next-generation wireless implantable brain machine interface. Neuromorphic Computing and Engineering. 5(1): 014004. doi:10.1088/2634-4386/adad10
  74. Vahidi, P., Sani, O. G. & Shanechi, M. (2025). BRAID: Input-driven nonlinear dynamical modeling of neural-behavioral data. International Conference on Learning Representations.
  75. Leone, G., Martis, L., Raffo, L. & Meloni, P. (2025). Enabling SNN-based near-MEA neural decoding with channel selection: An open-HW approach. doi:10.23919/date64628.2025.10993220
  76. Mohan, V., Zhou, B., Wang, Z., Bharath, A., Drakakis, E. & Basu, A. (2025). Architectural exploration of hybrid neural decoders for neuromorphic implantable BMI. arXiv Preprint. arXiv:XXXX
  77. Yik, J., Berghe, K., Blanken, D., Bouhadjar, Y., Fabre, M., Hueber, P., Ke, W., Khoei, M. A., Kleyko, D., Pacik-Nelson, N., Pierro, A., Stratmann, P., Sun, P. V., Tang, G., Wang, S., Zhou, B., Ahmed, S. H., Vathakkattil Joseph, G., Leto, B., Micheli, A., Mishra, A. K., Lenz, G., Sun, T., Ahmed, Z., Akl, M., Anderson, B., Andreou, A. G., Bartolozzi, C., Basu, A., Bogdan, P., Bohte, S., Buckley, S., Cauwenberghs, G., Chicca, E., Corradi, F., Croon, G., Danielescu, A., Daram, A., Davies, M., Demirag, Y., Eshraghian, J., Fischer, T., Forest, J., Fra, V., Furber, S., Furlong, P. M., Gilpin, W., Gilra, A., Gonzalez, H. A., Indiveri, G., Joshi, S., Karia, V., Khacef, L., Knight, J. C., Kriener, L., Kubendran, R., Kudithipudi, D., Liu, S., Liu, Y., Ma, H., Manohar, R., Margarit-Taulé, J. M., Mayr, C., Michmizos, K., Muir, D. R., Neftci, E., Nowotny, T., Ottati, F., Ozcelikkale, A., Panda, P., Park, J., Payvand, M., Pehle, C., Petrovici, M. A., Posch, C., Renner, A., Sandamirskaya, Y., Schaefer, C. J. S., Schaik, A., Schemmel, J., Schmidgall, S., Schuman, C., Seo, J., Sheik, S., Shrestha, S. B., Sifalakis, M., Sironi, A., Stewart, K., Stewart, M., Stewart, T. C., Timcheck, J., Tömen, N., Urgese, G., Verhelst, M., Vineyard, C. M., Vogginger, B., Yousefzadeh, A., Zohora, F. T., Frenkel, C. & Reddi, V. J. (2025). The neurobench framework for benchmarking neuromorphic computing algorithms and systems. Nature Communications. 16(1): 1545. doi:10.1038/s41467-025-56739-4
  78. Zheng, J., Li, Y., Chen, L., Wang, F., Gu, B., Sun, Q., Gao, X. & Zhou, F. (2025). Effects of packet loss on neural decoding effectiveness in wireless transmission. Brain Sciences. 15(3): 221. doi:10.3390/brainsci15030221

History.

  • Version 2 - added CSV of results from Makin et al.
  • Version 1 - initial release.

Notes

This research was supported by the Congressionally Directed Medical Research Program (W81XWH-14-1-0510). JEO was supported by fellowship #2978 from the Paralyzed Veterans of America. JGM was supported by a fellowship from the Swartz Foundation.

Files

refh_results.csv

Files (24.0 GB)

Name Size Download all
md5:63ab3e2e55652fb5709eb024642111cf
418.1 MB Download
md5:cee905e1021535626a442748e5612643
663.3 MB Download
md5:1f7b4d964f931411789d1aa2ff10f018
590.1 MB Download
md5:ae16e46a6f1614103b451c17674ff3eb
817.2 MB Download
md5:e5155b431035f32ee37c81915db755fc
376.5 MB Download
md5:02546235653357a08430b5dd8d5d1265
923.5 MB Download
md5:cfbeaffc1717e2dd11ee8c5ac6f7a297
1.1 GB Download
md5:c33d5fff31320d709d23fe445561fb6e
909.0 MB Download
md5:9aa921f0788f6ccd32a1b8808c18eabd
144.0 MB Download
md5:de58797d649bdf2bec589c074ee991d2
1.1 GB Download
md5:197413a5339630ea926cbd22b8b43338
382.2 MB Download
md5:ef6a95c5a1a8d2126b90f5be0505e398
106.6 MB Download
md5:5587d27f46efa3c09a7f589f2addf3a9
124.0 MB Download
md5:788a0fc779bdfffa8388b1108e1d1ce5
109.2 MB Download
md5:c7f84c83f10494b34ec836ed2b3c9d58
120.3 MB Download
md5:af9b8bacc1079e5a1edb2bd6eadecfb8
126.9 MB Download
md5:87bd8c05d60200a5e0d86fd8e88748e2
117.9 MB Download
md5:30a8dc9229306d81288e8ae39c9e4942
100.7 MB Download
md5:5ea300952642e0fc54245144499db9bb
84.0 MB Download
md5:8e19ada5feee4cdef47a0ec66503076f
107.7 MB Download
md5:6426f0fe91a9a90f66cbb17c44e20c0d
138.7 MB Download
md5:90dc409a749b3c0da72b901d2b5d106e
158.4 MB Download
md5:8f92ff163bc409134af6ebd161dec826
107.0 MB Download
md5:d8cf4a2866f56b4c46513ff9fe5ddaf4
139.3 MB Download
md5:7a1bff8e115e7e58eae7cbc63a72ed98
129.9 MB Download
md5:cc8e198ae6330338af584d9e1204800d
126.7 MB Download
md5:13589b4c7cfad158e5a1aebd2d71f6e3
110.3 MB Download
md5:3b5f2c35eecc5175c526869d50f2eada
111.7 MB Download
md5:bae4f5b76c50e2e2aed775e6d2482fc3
128.2 MB Download
md5:ce33b61b7870e635bea5cab7601d27c3
177.1 MB Download
md5:b984a86fd30417fa8301136102caf2ad
106.2 MB Download
md5:41f420af06373b456ede45da0536a10f
97.5 MB Download
md5:ad57bf06ac505e4d70ae7100c721b8aa
112.7 MB Download
md5:a3ce046e0b67b489d19e34a31232d512
139.7 MB Download
md5:ea1721fefe443420a356b4f93f5bb731
152.0 MB Download
md5:3d77802c59e3e4ebe6778326cfc68c0a
171.8 MB Download
md5:2790b1c869564afaa7772dbf9e42d784
208.8 MB Download
md5:4cae63b58c4cb9c8abd44929216c703b
1.1 GB Download
md5:e051a2ddfeb67f31395a8f934b6a04bf
1.3 GB Download
md5:3f410a56706563b4ce5584c5b5c83cf2
1.6 GB Download
md5:739b70762d838f3a1f358733c426bb02
779.5 MB Download
md5:ec480664e7da8c6be0ba8ee709eecf8b
1.3 GB Download
md5:bba2889a6ea20e74c8a9054e97a80dd4
1.2 GB Download
md5:47dc8d717ac4e46af31a696422d83ed7
1.4 GB Download
md5:79d99cd6b8db25ba0420a906350a44ff
1.6 GB Download
md5:47342da09f9c950050c9213c3df38ea3
902.2 MB Download
md5:ccbba097e02fa300ab5a87b27702f337
2.0 GB Download
md5:235fba6f4913e46a56764fb80faee510
728.8 kB Preview Download

Additional details

References

  • 1. Makin, J. G., O'Doherty, J. E., Cardoso, M. M. B. & Sabes, P. N. (2018). Superior arm-movement decoding from cortex with a new, unsupervised-learning algorithm. J Neural Eng. 15(2): 026010. doi:10.1088/1741-2552/aa9e95