Published March 1, 1992 | Version v1
Journal article Open

Effects of natural polymer acetylation on the anaerobic bioconversion to methane and carbon dioxide

Description

The successful production of novel biodegradable plastic copolymers incorporating both synthetic plastic formulations, such as polystyrene, and naturally occurring biodegradable polymer components, such as cellulose, starch, or xylan, requires stable chemical bonding between these polymers. Modification of the natural polymers through acetylation of the available hydroxyl groups permits the formation of appropriate film-forming plastic copolymers. However, modification of natural polymers has been demonstrated to result in decreased attack by microbial catalysts. For this study, the abundant natural polymers cellulose, starch, and xylan were substituted with acetate to various degrees, and the effect of this modification on the anaerobic biodegradation was assessed using the biochemical methane potential (BMP) protocol. Significant reduction in anaerobic biodegradability resulted with all polymers at substitution levels of between 1.2-1.7. For the xylan acetate series, the trends for anaerobic biodegradation were in good agreement with reduced enzymatic hydyolysis using commercially available xylanase preparations.

Files

article.pdf

Files (682.2 kB)

Name Size Download all
md5:cf52dbce3bc71470b61c3567c33cf9c7
682.2 kB Preview Download