Journal article Open Access

Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place

Rosenband, T.; Hume, D. B.; Brusch, A.; Schmidt, P. O.; Chou, C. W.; Lorini, L.; Oskay, W. H.; Drullinger, R. E.; Fortier, T. M.; Stalnaker, J. E.; Diddams, S. A.; Swann, W. C.; Newbury, N. R.; Itano, W. M.; Wineland, D. J.; Bergquist, J. C.

Time has always had a special status in physics because of its fundamental role in specifying the regularities of nature and because of the extraordinary precision with which it can be measured. This precision enables tests of fundamental physics and cosmology, as well as practical applications such as satellite navigation. Recently, a regime of operation for atomic clocks based on optical transitions has become possible, promising even higher performance. We report the frequency ratio of two optical atomic clocks with a fractional uncertainty of 5.2 x 10(-17). The ratio of aluminum and mercury single- ion optical clock frequencies nu(Al+)/nu(Hg+) is 1.052871833148990438( 55), where the uncertainty comprises a statistical measurement uncertainty of 4.3 x 10(-17), and systematic uncertainties of 1.9 x 10(-17) and 2.3 x 10(-17) in the mercury and aluminum frequency standards, respectively. Repeated measurements during the past year yield a preliminary constraint on the temporal variation of the fine- structure constant alpha of alpha/alpha = (-1.6 +/- 2. 3) x 10(-17)/year.

Files (431.1 kB)
Name Size
article.pdf
md5:6865fd00173ec0cc5a021fed0301b422
431.1 kB Download
23
29
views
downloads
Views 23
Downloads 29
Data volume 12.5 MB
Unique views 23
Unique downloads 26

Share

Cite as