The collection contains data sets (and related publications) collected in the Vallon de Nant catchment, Swiss Alps, by different research groups. All publications are summarized here. The leading research institute is IDYST from University of Lausanne, which together with WSL maintains a stream gauge and sediment transport observation station at the catchment outlet. The catchment is part of the WSL Sediment transport observation network. Published sediment transport data is available from Envidat.

The catchment can be visualized on map.geoadmin.ch, in the dataset "Topographical catchment areas of Swiss waterbodies 2 km² ", catchment number 122183 (but with a slightly different outlet, the experiment catchment outlet is at 2'574'620.5, 1'122'475.4, here).

Additional resources

PhD theses

Peer-reviewed publications

  • Beria, H., Larsen, J. R., Michelon, A., Ceperley, N. C., and Schaefli, B.: HydroMix v1.0: a new Bayesian mixing framework for attributing uncertain hydrological sources, Geosci. Model Dev., 13, 2433-2450, https://doi.org/10.5194/gmd-13-2433-2020, 2020.
  • Ceperley, N., Zuecco, G., Beria, H., Carturan, L., Michelon, A., Penna, D., Larsen, J., and Schaefli, B.: Seasonal snow cover decreases young water fractions in high Alpine catchments, Hydrological Processes, 34, 4794-4813, https://doi.org/10.1002/hyp.13937, 2020.
  • Giaccone, E., Luoto, M., Vittoz, P., Guisan, A., Mariéthoz, G., and Lambiel, C.: Influence of microclimate and geomorphological factors on alpine vegetation in the Western Swiss Alps, Earth Surface Processes and Landforms, 44, 3093– 3107, 10.1002/esp.4715, 2019.

  • Horgby, Å., Boix Canadell, M., Ulseth, A. J., Vennemann, T. W., and Battin, T. J.: High-Resolution Spatial Sampling Identifies Groundwater as Driver of CO2 Dynamics in an Alpine Stream Network, Journal of Geophysical Research: Biogeosciences, 124, 1961-1976, https://doi.org/10.1029/2019JG005047, 2019.

  • Kneib, M., Cauvy-Fraunié, S., Escoffier, N., Boix Canadell, M., Horgby, Å., and Battin, T. J.: Glacier retreat changes diurnal variation intensity and frequency of hydrologic variables in Alpine and Andean streams, Journal of Hydrology, 583, 124578, https://doi.org/10.1016/j.jhydrol.2020.124578, 2020.
  • Lambiel, C., Bardou, E., Delaloye, R., Schuetz, P., and Schoeneich, P.: Extension spatiale du pergélisol dans les Alpes vaudoises; implication pour la dynamique sédimentaire locale, Bull. Soc. vaud. Sc. nat., 91, 407-424, 2009.

  • Lane, S. N., Borgeaud, L., and Vittoz, P.: Emergent geomorphic–vegetation interactions on a subalpine alluvial fan, Earth Surface Processes and Landforms, 41, 72-86, https://doi.org/10.1002/esp.3833, 2016.

  • Mächler, E., Salyani, A., Walser, J. C., Larsen, A., Schaefli, B., Altermatt, F., and Ceperley, N.: Environmental DNA simultaneously informs hydrological and biodiversity characterization of an Alpine catchment, Hydrol. Earth Syst. Sci., 1-30, https://doi.org/10.5194/hess-25-735-2021, 2021.

  • Michelon, A., Benoit, L., Beria, H., Ceperley, N., and Schaefli, B.: On the value of high density rain gauge observations for small Alpine headwater catchment hydrology, Hydrol. Earth Syst. Sci., 2020, 1-39, https://doi.org/10.5194/hess-2020-371, Accepted.
  • Thornton, J. M., Brauchli, T., Mariethoz, G., and Brunner, P.: Efficient multi-objective calibration and uncertainty analysis of distributed snow simulations in rugged alpine terrain, Journal of Hydrology, 126241, https://doi.org/10.1016/j.jhydrol.2021.126241, 2021.

 We might not be aware of some publications, please keep us updated