NATHENA project aims at developing new complex inner structures for heat exchangers. NATHENA project will focus on the design development of a complex compact heat exchanger that best addresses thermal performance, made by additive manufacturing. These new compact air-air heat exchangers developed in NATHENA project will provide an efficient thermal management system dedicated to hybrid propulsion system. Two types of material will be studied regarding heat exchanger use: Aluminium for low temperature range and Inconel for high temperature range. The set objectives (see targets below) will be reached using calculation and multi-physical simulation (thermo-mechanical-fluidic) applied to evolutionary latticed and thin-walled structures combined optionally with fins to form a matrix of complex structures. Predictive models and/or laws will be developed for pressure and temperature drop. Topological and parametric optimization will be carried out in an iterative way towards the most efficient model. Through sample tests and final element method, calculation correlations will be carried out to ensure the relevance and validity of the basic structural choices as well as their combinations.

Targets:
Delta temperature: 200°C to 400°C
Flow: 0.01kg/s to 2kg/s
Power: 0.5 to 500kW
Reynolds number: 400 to 10000
Pressure drop: 100mBar max
Size: up to 500x300x300mm

Within this community related to the european project NATHENA, we can find everything related to the project results : 

- Public deliverables, 

- Publications, 

- Videos, 

- Data sets, 

- Etc...