Published May 1, 2013 | Version v1
Journal article Open

Managing compost stability and amendment to soil to enhance soil heating during soil solarization

Description

Soil solarization is a method of soil heating used to eradicate plant pathogens and weeds that involves passive solar heating of moist soil mulched (covered) with clear plastic tarp. Various types of organic matter may be incorporated into soil prior to solarization to increase biocidal activity of the treatment process. Microbial activity associated with the decomposition of soil organic matter may increase soil temperatures during solarization, potentially enhancing solarization efficacy. However, the level of organic matter decomposition (stability) necessary for increasing soil temperature is not well characterized, nor is it known if various amendments render the soil phytotoxic to crops following solarization. Laboratory studies and a field trial were performed to determine heat generation in soil amended with mature green waste compost and wheat bran during solarization. Respiration was measured in amended soil samples prior to and following solarization as a function of soil depth. Additionally, phytotoxicity was estimated through measurement of germination and early growth of lettuce seedlings in greenhouse assays. Amendment of soil with 10% (g/g) compost (8% green waste + 2% wheat bran) containing 16.9 mg CO2/g dry weight organic carbon resulted in soil temperatures that were 2oC to 4oC higher than soil alone. Approximately 85% of total organic carbon within the amended soil was exhausted during 22 days of solarization. There was no significant difference in residual respiration with soil depth down to 17.4 cm. Although freshly amended soil proved highly inhibitory to lettuce seed germination and seedling growth, phytotoxicity was not detected in solarized amended soil at any depth tested, between 0-17.4 cm, after 22 days of field solarization.

Files

article.pdf

Files (635.4 kB)

Name Size Download all
md5:86ecf0581931af525698de06376f8fdc
635.4 kB Preview Download