Published October 11, 2023
| Version v4
Dataset
Open
UAV-PDD2023: A benchmark dataset for pavement distress detection based on UAV images
Description
The images in the dataset ( VOC format) were captured by a UAV at an altitude of 30 meters. The collected images were annotated in PASCAL VOC format. A total of 11,158 instances in 2,440 images are incorporated in the dataset.
- The UAV-PDD2023 dataset, captured by unmanned aerial vehicles (UAVs), provides a benchmark for road damage detection. It is highly useful for municipal authorities and road agencies to conduct low-cost road condition monitoring.
- Six types of road damages are labeled in the dataset: Longitudinal cracks (LC), Transverse cracks (TC), Alligator cracks (AC), Oblique cracks (OC), Repair (RP), and Potholes (PH).
- Researchers can use this dataset as a benchmark to evaluate the performance of different algorithms in addressing similar problems, such as image classification and object detection.
Files
UAV-PDD2023.zip
Files
(2.1 GB)
Name | Size | Download all |
---|---|---|
md5:0745d017ce2dce23bd73944e9b0acec7
|
2.1 GB | Preview Download |