Published October 12, 2023
| Version v1
Dataset
Open
SEVIRI AOD/COD Product [DUST2MSG]
- 1. Rayference
- 2. European Space Agency
Description
In the framework of the DUST2MSG ESA project, the CISAR algorithm, originally developed by Rayference for the joint retrieval of surface reflectance, aerosol and cloud single scattering properties, has been applied to SEVIRI observations acquired from both MSG1 and MSG4 from March to August 2020 to obtain a dust product. This Dataset includes hourly atmospheric products. Specification on the filename convention, format and content of the products can be found on the Product User Manual (PUM)
Files
DUST2MSG_D-5_PUG_V1.pdf
Files
(88.3 GB)
Name | Size | Download all |
---|---|---|
md5:dd571c14393bb3d0ecbf79dd37dee393
|
138.6 kB | Preview Download |
md5:56c2938fb3ad833ec939d4809deb315e
|
443.5 MB | Preview Download |
md5:c4520906b189ae6436f4d79865614602
|
3.1 GB | Preview Download |
md5:ac23cf60b66376b92393612239ea1cc0
|
3.2 GB | Preview Download |
md5:865161a4d727d6dede7c13dda89f7756
|
3.2 GB | Preview Download |
md5:f58847d55f3c723a15012faf62fac0a0
|
3.2 GB | Preview Download |
md5:ac0645b46095a1889b4a3daf159fdc27
|
3.3 GB | Preview Download |
md5:242c5d314800f45176ce38828f8f0480
|
3.3 GB | Preview Download |
md5:735e167717ca1943bad6b9339dae3d3b
|
3.3 GB | Preview Download |
md5:f79f4c24554fa46bd821546a5baeb944
|
3.3 GB | Preview Download |
md5:3db0b54d5934d86bf5ec8b9c3db00037
|
3.4 GB | Preview Download |
md5:c9e55a62a63a68f9d8c92cbfc4f02887
|
3.4 GB | Preview Download |
md5:76af32ab53d34d46bb6432b8deaae5fa
|
3.4 GB | Preview Download |
md5:a7739eae163499b90e9c177386728ef2
|
3.4 GB | Preview Download |
md5:cad2fd1a781079226831c2929c1e97ca
|
3.4 GB | Preview Download |
md5:c355f003faa9b0f6f325fd64f49a733a
|
3.5 GB | Preview Download |
md5:8d6f28ae8a660d25a5cf81f6170255cd
|
3.5 GB | Preview Download |
md5:270f656fafc27e8b395ab0d7f720f7df
|
3.5 GB | Preview Download |
md5:5f3d8d57b45ab7f6ac5528b9429dd036
|
3.5 GB | Preview Download |
md5:ac878730863ec26f642630ed9ccdf938
|
3.4 GB | Preview Download |
md5:ad227ce90342d710b7f273030e643e93
|
3.4 GB | Preview Download |
md5:adc1f0f7d360a6424c7124df6db6355d
|
3.3 GB | Preview Download |
md5:99227903cb57c32f27405936e8eb6ea3
|
3.3 GB | Preview Download |
md5:b7941a7dc0b33e7328fefaf52cd82e0b
|
3.4 GB | Preview Download |
md5:35e087a36c0d58ebf454f46e3c625785
|
3.4 GB | Preview Download |
md5:95a97c49def82e3665f01e3ff4f61dc9
|
3.4 GB | Preview Download |
md5:32cbf5c6a53eace501960e7ff896682a
|
3.3 GB | Preview Download |
md5:36c695d9ffbf138fcc282714aecf606f
|
3.3 GB | Preview Download |
md5:9098b54cd229680135fbbaa7192e2563
|
933.6 MB | Preview Download |
Additional details
References
- Govaerts and Luffarelli (2018), Joint retrieval of surface reflectance and aerosol properties with continuous variation of the state variables in the solution space – Part 1: theoretical concept, https://amt.copernicus.org/articles/11/6589/2018/
- Luffarelli and Govaerts (2019), Joint retrieval of surface reflectance and aerosol properties with continuous variation of the state variables in the solution space – Part 2: application to geostationary and polar-orbiting satellite observations, https://amt.copernicus.org/articles/12/791/2019/
- Luffarelli et al (2022), Aerosol Optical Thickness Retrieval in Presence of Cloud: Application to S3A/SLSTR Observations, https://www.mdpi.com/2073-4433/13/5/691