Caenorhabditis elegansParkin: Regulators of its abundance and role in autophagy-lysosomal dynamics
Creators
- 1. Institute for Biomedicine, Eurac Research, Affiliated institute of the University of Lübeck, Bolzano, 39100, Italy
- 2. Cardiovascular Research Institute and Department of Physiology, University of California San Francisco, San Francisco, CA, 94158, USA
- 3. Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, 94158, USA
Description
Background: Parkin, which when mutated leads to early-onset Parkinson's disease, acts as an E3 ubiquitin ligase. How Parkin is regulated for selective protein and organelle targeting is not well understood. Here, we used protein interactor and genetic screens in Caenorhabditis elegans ( C. elegans) to identify new regulators of Parkin abundance and showed their impact on autophagy-lysosomal dynamics and alpha-Synuclein processing.
Methods: We generated a transgene encoding mCherry-tagged C. elegans Parkin – Parkinson's Disease Related 1 (PDR-1). We performed protein interactor screen using Co-immunoprecipitation followed by mass spectrometry analysis to identify putative interacting partners of PDR-1. Ribonucleic acid interference (RNAi) screen and an unbiased mutagenesis screen were used to identify genes regulating PDR-1 abundance. Confocal microscopy was used for the identification of the subcellular localization of PDR-1 and alpha-Synuclein processing.
Results: We show that the mCherry::pdr-1 transgene rescues the mitochondrial phenotype of pdr-1 mutants and that the expressed PDR-1 reporter is localized in the cytosol with enriched compartmentalization in the autophagy-lysosomal system. We determined that the transgenic overexpression of the PDR-1 reporter, due to inactivated small interfering RNA (siRNA) generation pathway, disrupts autophagy-lysosomal dynamics. From the RNAi screen of putative PDR-1 interactors we found that the inactivated Adenine Nucleotide Translocator ant-1.1/hANT, or hybrid ubiquitin genes ubq-2/h UBA52 and ubl-1/h RPS27A encoding a single copy of ubiquitin fused to the ribosomal proteins L40 and S27a, respectively, induced PDR-1 abundance and affected lysosomal dynamics. In addition, we demonstrate that the abundant PDR-1 plays a role in alpha-Synuclein processing.
Conclusions: These data show that the abundant C. elegans Parkin ortholog affects the autophagy-lysosomal system together with alpha-Synuclein processing which can help in understanding the pathology in Parkin-related diseases.
Files
openreseurope-2-15353.pdf
Files
(6.5 MB)
Name | Size | Download all |
---|---|---|
md5:8034f8d60c0801f3e36e35a109addbd7
|
6.5 MB | Preview Download |
Additional details
References
- Shimura H, Hattori N, Kubo S (2000). Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet. doi:10.1038/77060
- Nuytemans K, Theuns J, Cruts M (2010). Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Hum Mutat. doi:10.1002/humu.21277
- Narendra D, Walker JE, Youle R (2012). Mitochondrial Quality Control Mediated by PINK1 and Parkin: Links to Parkinsonism. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a011338
- Cookson MR, Lockhart PJ, McLendon C (2003). RING finger 1 mutations in Parkin produce altered localization of the protein. Hum Mol Genet. doi:10.1093/hmg/ddg328
- Seirafi M, Kozlov G, Gehring K (2015). Parkin structure and function. FEBS J. doi:10.1111/febs.13249
- Narendra D, Tanaka A, Suen DF (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol. doi:10.1083/jcb.200809125
- Kazlauskaite A, Martínez-Torres RJ, Wilkie S (2015). Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation. EMBO Rep. doi:10.15252/embr.201540352
- Gladkova C, Maslen SL, Skehel JM (2018). Mechanism of parkin activation by PINK1. Nature. doi:10.1038/s41586-018-0224-x
- Koyano F, Okatsu K, Kosako H (2014). Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature. doi:10.1038/nature13392
- Springer W, Hoppe T, Schmidt E (2005). A Caenorhabditis elegans Parkin mutant with altered solubility couples alpha-synuclein aggregation to proteotoxic stress. Hum Mol Genet. doi:10.1093/hmg/ddi371
- Ahier A, Dai CY, Kirmes I (2021). PINK1 and parkin shape the organism-wide distribution of a deleterious mitochondrial genome. Cell Rep. doi:10.1016/j.celrep.2021.109203
- Luz AL, Rooney JP, Kubik LL (2015). Mitochondrial Morphology and Fundamental Parameters of the Mitochondrial Respiratory Chain Are Altered in Caenorhabditis elegans Strains Deficient in Mitochondrial Dynamics and Homeostasis Processes. PLoS One. doi:10.1371/journal.pone.0130940
- Cooper JF, Machiela E, Dues DJ (2017). Activation of the mitochondrial unfolded protein response promotes longevity and dopamine neuron survival in Parkinson's disease models. Sci Rep. doi:10.1038/s41598-017-16637-2
- Cabello J, Sämann J, Gómez-Orte E (2014). PDR-1/hParkin negatively regulates the phagocytosis of apoptotic cell corpses in Caenorhabditis elegans. Cell Death Dis. doi:10.1038/cddis.2014.57
- Trempe JF, Chen CXQ, Grenier K (2009). SH3 Domains from a Subset of BAR Proteins Define a Ubl-Binding Domain and Implicate Parkin in Synaptic Ubiquitination. Mol Cell. doi:10.1016/j.molcel.2009.11.021
- Cao M, Milosevic I, Giovedi S (2014). Upregulation of Parkin in Endophilin Mutant Mice. J Neurosci. doi:10.1523/JNEUROSCI.1710-14.2014
- Song P, Trajkovic K, Tsunemi T (2016). Parkin Modulates Endosomal Organization and Function of the Endo-Lysosomal Pathway. J Neurosci. doi:10.1523/JNEUROSCI.2569-15.2016
- Shimura H, Schlossmacher MG, Hattori N (2001). Ubiquitination of a new form of alpha-synuclein by parkin from human brain: implications for Parkinson's disease. Science. doi:10.1126/science.1060627
- Chung KKK, Thomas B, Li X (2004). S-Nitrosylation of Parkin Regulates Ubiquitination and Compromises Parkin's Protective Function. Science. doi:10.1126/science.1093891
- Vandiver MS, Paul BD, Xu R (2013). Sulfhydration mediates neuroprotective actions of parkin. Nat Commun. doi:10.1038/ncomms2623
- Vozdek R, Long Y, Ma DK (2018). The receptor tyrosine kinase HIR-1 coordinates HIF-independent responses to hypoxia and extracellular matrix injury. Sci Signal. doi:10.1126/scisignal.aat0138
- Brenner S (1974). The genetics of Caenorhabditis elegans. Genetics. doi:10.1093/genetics/77.1.71
- Ma DK, Vozdek R, Bhatla N (2012). CYSL-1 Interacts with the O -Sensing Hydroxylase EGL-9 to Promote H2S-Modulated Hypoxia-Induced Behavioral Plasticity in . Neuron. doi:10.1016/j.neuron.2011.12.037
- Minevich G, Park DS, Blankenberg D (2012). CloudMap: A Cloud-Based Pipeline for Analysis of Mutant Genome Sequences. Genetics. doi:10.1534/genetics.112.144204
- Blankenberg D, Kuster GV, Coraor N (2010). Galaxy: A Web-Based Genome Analysis Tool for Experimentalists. Curr Protoc Mol Biol. doi:10.1002/0471142727.mb1910s89
- Kamath RS, Ahringer J (2003). Genome-wide RNAi screening in . Methods. doi:10.1016/s1046-2023(03)00050-1
- Guan S, Price JC, Prusiner SB (2011). A data processing pipeline for mammalian proteome dynamics studies using stable isotope metabolic labeling. Mol Cell Proteomics. doi:10.1074/mcp.M111.010728
- Fernández-Cárdenas LP, Villanueva-Chimal E, Salinas LS (2017). ATPase inhibitor factor 1 (IF1) MAI-2 preserves the mitochondrial membrane potential (Δ m) and is important to induce germ cell apoptosis. PLoS One. doi:10.1371/journal.pone.0181984
- Vozdek R, Wang B, Li KH (2021). Caenorhabditis elegans Parkin: regulators of its abundance and role in autophagy-lysosomal dynamics. Zenodo.
- Kang C, You Y, Avery L (2007). Dual roles of autophagy in the survival of during starvation. Genes Dev. doi:10.1101/gad.1573107
- Luo S, Wang X, Bai M (2021). The conserved autoimmune-disease risk gene regulates lysosome dynamics. Proc Natl Acad Sci U S A. doi:10.1073/pnas.2011379118
- Billi AC, Fischer SEJ, Kim JK (2014). Endogenous RNAi pathways in . WormBook. doi:10.1895/wormbook.1.170.1
- Hoshino A, Wang W, Wada S (2019). The ADP/ATP translocase drives mitophagy independent of nucleotide exchange. Nature. doi:10.1038/s41586-019-1667-4
- Geisler S, Holmström KM, Skujat D (2010). PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol. doi:10.1038/ncb2012
- Imai Y, Soda M, Hatakeyama S (2002). CHIP Is Associated with Parkin, a Gene Responsible for Familial Parkinson's Disease, and Enhances Its Ubiquitin Ligase Activity. Mol Cell. doi:10.1016/s1097-2765(02)00583-x
- Zanon A, Rakovic A, Blankenburg H (2013). Profiling of Parkin-binding partners using tandem affinity purification. PLoS One. doi:10.1371/journal.pone.0078648
- Wei Y, Chiang WC, Sumpter R (2017). Prohibitin 2 Is an Inner Mitochondrial Membrane Mitophagy Receptor. Cell. doi:10.1016/j.cell.2016.11.042
- Komander D, Clague MJ, Urbé S (2009). Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol. doi:10.1038/nrm2731
- Kobayashi M, Oshima S, Maeyashiki C (2016). The ubiquitin hybrid gene regulates ubiquitination of ribosome and sustains embryonic development. Sci Rep. doi:10.1038/srep36780
- Petrucelli L, O'Farrell C, Lockhart PJ (2002). Parkin protects against the toxicity associated with mutant alpha-Synuclein: proteasome dysfunction selectively affects catecholaminergic neurons. Neuron. doi:10.1016/s0896-6273(02)01125-x
- Rana A, Rera M, Walker DW (2013). Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1216197110
- Olzmann JA, Li L, Chudaev MV (2007). Parkin-mediated K63-linked polyubiquitination targets misfolded DJ-1 to aggresomes via binding to HDAC6. J Cell Biol. doi:10.1083/jcb.200611128
- Tan JMM, Wong ESP, Kirkpatrick DS (2008). Lysine 63-linked ubiquitination promotes the formation and autophagic clearance of protein inclusions associated with neurodegenerative diseases. Hum Mol Genet. doi:10.1093/hmg/ddm320
- Winner B, Jappelli R, Maji SK (2011). demonstration that alpha-Synuclein oligomers are toxic. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1100976108
- Guerra F, Girolimetti G, Beli R (2019). Synergistic Effect of Mitochondrial and Lysosomal Dysfunction in Parkinson's Disease. Cells. doi:10.3390/cells8050452
- Okarmus J, Bogetofte H, Schmidt SI (2020). Lysosomal perturbations in human dopaminergic neurons derived from induced pluripotent stem cells with mutation. Sci Rep. doi:10.1038/s41598-020-67091-6