Info: Zenodo’s user support line is staffed on regular business days between Dec 23 and Jan 5. Response times may be slightly longer than normal.

Published January 31, 2023 | Version v1
Journal article Restricted

Glycine max (L.) Merr. (Soybean) metabolome responses to potassium availability

Description

Cotrim, Gustavo dos Santos, Silva, Deivid Metzker da, Graça, José Perez da, Junior, Adilson de Oliveira, Castro, Cesar de, Zocolo, Guilherme Julião, Lannes, Lucíola Santos, Hoffmann-Campo, Clara Beatriz (2023): Glycine max (L.) Merr. (Soybean) metabolome responses to potassium availability. Phytochemistry (113472) 205: 1-16, DOI: 10.1016/j.phytochem.2022.113472, URL: http://dx.doi.org/10.1016/j.phytochem.2022.113472

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:7B2C7E56B504854AD573FFD9FE289263

References

  • Ahmad, P., Ashraf, M., Hakeem, K.R., Azooz, M., Rasool, S., Chandna, R., Akram, N.A., 2014. Potassium starvation-induced oxidative stress and antioxidant defense responses in Brassica juncea. J. Plant Interact. 9, 1-9. https://doi.org/10.1080/ 17429145.2012.747629.
  • Almeida, D.M., Oliveira, M.M., Saibo, N.J.M., 2017. Regulation of Na + and K + homeostasis in plants: towards improved salt stress tolerance in crop plants. Genet. Mol. Biol. 40, 326-345. https://doi.org/10.1590/1678-4685-gmb-2016-0106.
  • Alvares, C.A., Stape, J.L., Sentelhas, P.C., de Moraes Goncalves, J.L., Sparovek, G., 2013. K¨oppen' s climate classification map for Brazil. Meteorol. Z. 22, 711-728. https:// doi.org/10.1127/0941-2948/2013/0507.
  • Amtmann, A., Rubio, F., 2012. Potassium in plants. In: eLS. John Wiley & Sons, Ltd, Chichester. https://doi.org/10.1002/9780470015902.a0023737.
  • Amtmann, A., Troufflard, S., Armengaud, P., 2008. The effect of potassium nutrition on pest and disease resistance in plants. Physiol. Plantarum 133, 682-691. https://doi. org/10.1111/j.1399-3054.2008.01075.x.
  • Armengaud, P., Sulpice, R., Miller, A.J., Stitt, M., Amtmann, A., Gibon, Y., 2009. Multilevel analysis of primary metabolism provides new insights into the role of potassium nutrition for glycolysis and nitrogen assimilation in Arabidopsis roots. Plant Physiol. 150, 772-785. https://doi.org/10.1104/pp.108.133629.
  • Asada, K., 2000. The water-water cycle as alternative photon and electron sinks. Phil. Trans. Roy. Soc. Lond. B Biol. Sci. 355, 1419-1431. https://doi.org/10.1098/ rstb.2000.0703.
  • Ban, Y.J., Song, Y.H., Kim, J.Y., Baiseitova, A., Lee, K.W., Kim, K.D., Park, K.H., 2020. Comparative investigation on metabolites changes in soybean leaves by ethylene and activation of collagen synthesis. Ind. Crop. Prod. 154, 112743 https://doi.org/ 10.1016/j.indcrop.2020.112743.
  • Bellaloui, N., Yin, X., Mengistu, A., McClure, A.M., Tyler, D.D., Reddy, K.N., 2013. Soybean seed protein, oil, fatty acids, and isoflavones altered by potassium fertilizer rates in the Midsouth. Am. J. Plant Sci. 4, 976-988. https://doi.org/10.4236/ ajps.2013.45121.
  • Bender, R.R., Haegele, J.W., Below, F.E., 2015. Nutrient uptake, partitioning, and remobilization in modern soybean varieties. Agron. J. 107, 563-573. https://doi. org/10.2134/agronj14.0435.
  • Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289-300. https:// doi.org/10.1111/j.2517-6161.1995.tb02031.x.
  • Bou´e, S.M., Shih, F.F., Shih, B.Y., Daigle, K.W., Carter-Wientjes, C.H., Cleveland, T.E., 2008. Effect of biotic elicitors on enrichment of antioxidant properties and induced isoflavones in soybean. J. Food Sci. 73, H43-H49. https://doi.org/10.1111/j.1750- 3841.2008.00707.x.
  • Bruneau, L., Chapman, R., Marsolais, F., 2006. Co-occurrence of both L-asparaginase subtypes in Arabidopsis: at3g16150 encodes a K + -dependent L -asparaginase. Planta 224, 668-679. https://doi.org/10.1007/s00425-006-0245-9.
  • Cakmak, I., Marschner, H., 1992. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol. 98, 1222-1227. https://doi.org/10.1104/ pp.98.4.1222.
  • Cakmak, I., 1994. Activity of ascorbate-dependent H2O2-scavenging enzymes and leaf chlorosis are enhanced in magnesium- and potassium-deficient leaves, but not in phosphorus-deficient leaves. J. Exp. Bot. 45, 1259-1266. https://doi.org/10.1093/ jxb/45.9.1259.
  • Cakmak, I., 2005. The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J. Plant Nutr. Soil Sci. 168, 521-530. https://doi.org/10.1002/ jpln.200420485.
  • Castro, C. de, Oliveira Junior, A. de, Oliveira, F. A. de, Firmano, R.F., Zancanaro, L., Klepker, D., Foloni, J.S.S., Brighenti, A.M., Benites, V. de M., 2021. Magnesium: management for the nutritional balance of soybean, Documents 438. Embrapa Soybean, Londrina. ISSN 2176-2937.
  • Cheng, J., Yuan, C., Graham, T.L., 2011. Potential defense-related prenylated isoflavones in lactofen-induced soybean. Phytochemistry 72, 875-881. https://doi.org/ 10.1016/j.phytochem.2011.03.010.
  • Cosio, E.G., Weissenb¨ock, G., McClure, J.W., 1985. Acifluorfen-induced isoflavonoids and enzymes of their biosynthesis in mature soybean leaves. Plant Physiol. 78, 14-19. https://doi.org/10.1104/pp.78.1.14.
  • Cui, J., Abadie, C., Carroll, A., Lamade, E., Tcherkez, G., 2019a. Responses to K deficiency and waterlogging interact via respiratory and nitrogen metabolism. Plant Cell Environ. 42, 647-658. https://doi.org/10.1111/pce.13450.
  • Cui, J., Davantture, M., Zivy, M., Lamade, E., Tcherkez, G., 2019b. Metabolic response to potassium availability and waterlogging reshape respiration and carbon use efficiency in oil palm. New Phytol. 223, 310-322. https://doi.org/10.1111/ nph.15751.
  • Cui, J., Tcherkez, G., 2021. Potassium dependency of enzymes in plant primary metabolism. Plant Physiol. Biochem. 166, 522-530. https://doi.org/10.1016/j. plaphy.2021.06.017.
  • Da Graca, J.P., Ueda, T.E., Janegitz, T., Vieira, S.S., Salvador, M.C., de Oliveira, M.C.N., Zingaretti, S.M., Powers, S.J., Pickett, J.A., Birkett, M.A., Hoffmann-Campo, C.B., 2016. The natural plant stress elicitor cis-jasmone causes cultivar-dependent reduction in growth of the stink bug, Euschistus heros and associated changes in flavonoid concentrations in soybean, Glycine max. Phytochemistry 131, 84-91. https://doi.org/10.1016/j.phytochem.2016.08.013.
  • Davis, J.L., Armengaud, P., Larson, T.R., Graham, I.A., White, P.J., Newton, A.C., Amtmann, A., 2018. Contrasting nutrient-disease relationships: potassium gradients in barley leaves have opposite effects on two fungal pathogens with different sensitivities to jasmonic acid Plant. Cell Environ 41, 2357-2372. https://doi.org/ 10.1111/pce.13350.
  • Devi, B.S.R., Kim, Y.J., Selvi, S.K., Gayathri, S., Altanzul, K., Parvin, S., Yang, D.U., Lee, O.R., Lee, S., Yang, D.C., 2012. Influence of potassium nitrate on antioxidant level and secondary metabolite genes under cold stress in Panax ginseng. Russ. J. Plant Physiol. 59, 318-325. https://doi.org/10.1134/S1021443712030041.
  • Diem, B., Godbold, D.L., 1993. Potassium, calcium and magnesium antagonism in clones of Populus trichocarpa. Plant Soil 155-156, 411-414. https://doi.org/10.1007/ BF00025070.
  • Dillon, F.M., Chludil, H.D., Zavala, J.A., 2017. Solar UV-B radiation modulates chemical defenses against Anticarsia gemmatalis larvae in leaves of field-grown soybean. Phytochemistry 141, 27-36. https://doi.org/10.1016/j.phytochem.2017.05.006.
  • Fehr, W.R., Caviness, C.E., 1977. Stages of soybean development. Special Report (Iowa State University) 80, 11. https://dr.lib.iastate.edu/handle/20.500.12876/90239.
  • Feng, Z., Ding, C., Li, W., Wang, D., Cui, D., 2020. Applications of metabolomics in the research of soybean plant under abiotic stress. Food Chem. 310, 125914 https://doi. org/10.1016/j.foodchem.2019.125914.
  • Firmano, R.F., 2017. Residual effect of potassium fertilization on the nutrient forms in soil. Dissertation (Master' s in Soils and Plant Nutrition) - Luiz de Queiroz College of Agriculture. University of Sao Paulo - Brazil. https://doi.org/10.11606/D.11.2017. tde-07062017-090108.
  • Firmano, R.F., Oliveira, A. de, Castro, C. de, Alleoni, L.R.F., 2020. Potassium rates on the cationic balance of an Oxisol and soybean nutritional status after 8 years of K deprivation. Exp. Agric. 56, 293-311. https://doi.org/10.1017/ S0014479719000371.
  • Foyer, C.H., Lelandais, M., Kunert, K.J., 1994. Photooxidative stress in plants. Physiol. Plantarum 92, 696-717. https://doi.org/10.1111/j.1399-3054.1994.tb03042.x.
  • Gaaliche, B., Ladhari, A., Zarrelli, A., Ben Mimoun, M., 2019. Impact of foliar potassium fertilization on biochemical composition and antioxidant activity of fig (Ficus carica L.). Sci. Hortic. 253, 111-119. https://doi.org/10.1016/j.scienta.2019.04.024.
  • Gao, X., Zhang, S., Zhao, X., Wu, Q., 2018. Potassium-induced plant resistance against soybean cyst nematode via root exudation of phenolic acids and plant pathogen-related genes. PLoS One 13. https://doi.org/10.1371/journal.pone.0200903.
  • Graham, T.L., Kim, J.E., Graham, M.Y., 1990. Role of constitutive isoflavone conjugates in the accumulation of glyceollin in soybean infected with Phytophthora megasperma. Mol. Plant Microbe Interact. 3, 157. https://doi.org/10.1094/MPMI-3-157.
  • Hafsi, C., Debez, A., Abdelly, C., 2014. Potassium deficiency in plants: effects and signaling cascades. Acta Physiol. Plant. 36, 1055-1070. https://doi.org/10.1007/ s11738-014-1491-2.
  • Harborne, J.B., Williams, C.A., 2000. Advances in flavonoid research since 1992. Phytochemistry 55, 481-504. https://doi.org/10.1016/S0031-9422(00)00235-1.
  • Harger, N., 2008. Sufficiency ranges for foliar contents of nutrients in soybean, using the DRIS method, obtained from basalt-derived soils. Thesis (Doctor Degree in Agronomy). State University of Londrina - UEL, Brazil.
  • Hasanuzzaman, M., Bhuyan, M., Nahar, K., Hossain, Md, Mahmud, J., Hossen, Md, Masud, A., Moumita Fujita, M., 2018. Potassium: a vital regulator of plant responses and tolerance to abiotic stresses. Agronomy 8, 31. https://doi.org/10.3390/ agronomy8030031.
  • Hernandez, M., Fernandez-Garcia, N., Garcia-Garma, J., Rubio-Asensio, J.S., Rubio, F., Olmos, E., 2012. Potassium starvation induces oxidative stress in Solanum lycopersicum L. roots. J. Plant Physiol. 169, 1366-1374. https://doi.org/10.1016/j. jplph.2012.05.015.
  • Herrera, M.D., Acosta-Gallegos, J.A., Reynoso-Camacho, R., P´erez-Ramirez, I.F., 2019. Common bean seeds from plants subjected to severe drought, restricted- and fullirrigation regimes show differential phytochemical fingerprint. Food Chem. 294, 368-377. https://doi.org/10.1016/j.foodchem.2019.05.076.
  • Hoffmann-Campo, C.B., Harborne, J.B., McCaffery, A.R., 2001. Pre-ingestive and postingestive effects of soya bean extracts and rutin on Trichoplusia ni growth. Entomol. Exp. Appl. 98, 181-194. https://doi.org/10.1046/j.1570-7458.2001.00773.x.
  • Hu, W., Yang, J., Meng, Y., Wang, Y., Chen, B., Zhao, W., Oosterhuis, D.M., Zhou, Z., 2015. Potassium application affects carbohydrate metabolism in the leaf subtending the cotton (Gossypium hirsutum L.) boll and its relationship with boll biomass. Field Crop. Res. 179, 120-131. https://doi.org/10.1016/j.fcr.2015.04.017.
  • Huber, D.M., Arny, D.C., 1985. Interactions of potassium with plant disease. In: Munson, R.D. (Ed.), Potassium in Agriculture. American Society of Agronomy, pp. 467-488. https://doi.org/10.2134/1985.potassium.c20.
  • Issawi, M., Sol, V., Riou, C., 2018. Plant photodynamic stress: what' s new? Front. Plant Sci. 9, 1-9. https://doi.org/10.3389/fpls.2018.00681.
  • Jarvis, P., Dormann, P., Peto, C.A., Lutes, J., Benning, C., Chory, J., 2000. Galactolipid deficiency and abnormal chloroplast development in the Arabidopsis MGD synthase 1 mutant. Proc. Natl. Acad. Sci. USA 97, 8175-8179. https://doi.org/10.1073/ pnas.100132197.
  • Keen, N.T., Taylor, O.C., 1975. Ozone injury in soybeans. Plant Physiol. 55, 731-733. https://doi.org/10.1104/pp.55.4.731.
  • Kuc, J., 1995. Phytoalexins, stress metabolism, and disease resistance in plants. Annu. Rev. Phytopathol. 33, 275-297. https://doi.org/10.1146/annurev. py.33.090195.001423.
  • Lea, P.J., Sodek, L., Parry, M.A.J., Shewry, P.R., Halford, N.G., 2007. Asparagine in plants. Ann. Appl. Biol. 150, 1-26. https://doi.org/10.1111/j.1744- 7348.2006.00104.x.
  • Lee, C.H., Yang, L., Xu, J.Z., Yeung, S.Y.V.Y., Huang, Y., Chen, Z.-Y., 2005. Relative antioxidant activity of soybean isoflavones and their glycosides. Food Chem. 90, 735-741. https://doi.org/10.1016/j.foodchem.2004.04.034.
  • Li, H., Yoon, J.-H., Won, H.-J., Ji, H.-S., Yuk, H.J., Park, K.H., Park, H.-Y., Jeong, T.-S., 2017. Isotrifoliol inhibits pro-inflammatory mediators by suppression of TLR/NF-κB and TLR/MAPK signaling in LPS-induced RAW264.7 cells. Int. Immunopharm. 45, 110-119. https://doi.org/10.1016/j.intimp.2017.01.033.
  • Liu, J., Hu, B., Liu, W., Qin, W., Wu, H., Zhang, J., Yang, C., Deng, J., Shu, K., Du, J., Yang, F., Yong, T., Wang, X., Yang, W., 2017. Metabolomic tool to identify soybean [Glycine max (L.) Merrill] germplasms with a high level of shade tolerance at the seedling stage. Sci. Rep. 7, 42478 https://doi.org/10.1038/srep42478.
  • Liu, Y., Li, M., Xu, J., Liu, X., Wang, S., Shi, L., 2019. Physiological and metabolomics analyses of young and old leaves from wild and cultivated soybean seedlings under low-nitrogen conditions. BMC Plant Biol. 19, 1-15. https://doi.org/10.1186/ s12870-019-2005-6.
  • Lu, Z., Hu, W., Ren, T., Zhu, C., Li, X., Cong, R., Guo, S., Lu, J., 2019. Impact of K deficiency on leaves and siliques photosynthesis via metabolomics in Brassica napus. Environ. Exp. Bot. 158, 89-98. https://doi.org/10.1016/j.envexpbot.2018.11.008.
  • Marschner, P., 2012. Marschner' s mineral nutrition of higher plants. third ed.. In: Marschner' s Mineral Nutrition of Higher Plants, third ed. Elsevier. https://doi.org/ 10.1016/C2009-0-63043-9.
  • Marschner, H., Cakmak, I., 1989. High light intensity enhances chlorosis and necrosis in leaves of zinc, potassium, and magnesium deficient bean (Phaseolus vulgaris) Plants. J. Plant Physiol. 134, 308-315. https://doi.org/10.1016/S0176-1617(89)80248-2.
  • Marschner, H., Kirkby, E.A., Cakmak, I., 1996. Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. J. Exp. Bot. 47, 1255-1263. https://doi.org/10.1093/jxb/47.Special_Issue.1255.
  • Malavolta, E., 1980. Elementos de nutrictao mineral de plantas. Agronomica ˆCeres, Stao Paulo.
  • Malvi, U.R., 2011. Interaction of micronutrients with major nutrients with special reference to potassium. Karnataka J. Agri. Sci. 24 (1), 106-109.
  • Mehlich, A., 1953. Determination of P, Ca, Mg, K, Na, and NH4. In: Short test methods used in soil testing division. North Carolina Soil Test Division, Raleigh, p. 8.
  • Mehlich, A., 1984. Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 15, 1409-1416. https://doi.org/10.1080/ 00103628409367568.
  • Mengel, K., Kirkby, E.A., Kosegarten, H., Appel, T. (Eds.), 2001. Principles of Plant Nutrition, fifth ed. Springer Netherlands, Dordrecht. https://doi.org/10.1007/978- 94-010-1009-2.
  • Meyer, M.C., Klepker, D., 2007. Management of anthracnose on soybean crop. In: XL Brazilian Congress of Phytopathology - Maring´a, 32. Braz. Phytopathol., Brazil, pp. 31-33.
  • Miao, B.-H., Han, X.-G., Zhang, W.-H., 2010. The ameliorative effect of silicon on soybean seedlings grown in potassium-deficient medium. Ann. Bot. 105, 967-973. https://doi.org/10.1093/aob/mcq063.
  • Moran, J.F., Klucas, R.V., Grayer, R.J., Abian, J., Becana, M., 1997. Complexes of iron with phenolic compounds from soybean nodules and other legume tissues: prooxidant and antioxidant properties. Free Radic. Biol. Med. 22, 861-870. https:// doi.org/10.1016/S0891-5849(96)00426-1.
  • Mugnai, S., Marras, A.M., Mancuso, S., 2011. Effect of hypoxic acclimation on anoxia tolerance in Vitis roots: response of metabolic activity and K + fluxes. Plant Cell Physiol. 52, 1107-1116. https://doi.org/10.1093/pcp/pcr061.
  • Murakami, S., Nakata, R., Aboshi, T., Yoshinaga, N., Teraishi, M., Okumoto, Y., Ishihara, A., Morisaka, H., Huffaker, A., Schmelz, E., Mori, N., 2014. Insect-induced daidzein, formononetin and their conjugates in soybean leaves. Metabolites 4, 532-546. https://doi.org/10.3390/metabo4030532.
  • Murakawa, M., Shimojima, M., Shimomura, Y., Kobayashi, K., Awai, K., Ohta, H., 2014. Monogalactosyldiacylglycerol synthesis in the outer envelope membrane of chloroplasts is required for enhanced growth under sucrose supplementation. Front. Plant Sci. 5, 1-13. https://doi.org/10.3389/fpls.2014.00280.
  • Nguyen, P.M., Kwee, E.M., Niemeyer, E.D., 2010. Potassium rate alters the antioxidant capacity and phenolic concentration of basil (Ocimum basilicum L.) leaves. Food Chem. 123, 1235-1241. https://doi.org/10.1016/j.foodchem.2010.05.092.
  • Nothias, L.-F., Petras, D., Schmid, R., Duhrkop, K., Rainer, J., Sarvepalli, A., Protsyuk, I., Ernst, M., Tsugawa, H., Fleischauer, M., Aicheler, F., Aksenov, A.A., Alka, O., Allard, P.-M., Barsch, A., Cachet, X., Caraballo-Rodriguez, A.M., Da Silva, R.R., Dang, T., Garg, N., Gauglitz, J.M., Gurevich, A., Isaac, G., Jarmusch, A.K., Kamenik, Z., Kang, K. Bin, Kessler, N., Koester, I., Korf, A., Le Gouellec, A., Ludwig, M., Martin, H.C., McCall, L.-I., McSayles, J., Meyer, S.W., Mohimani, H., Morsy, M., Moyne, O., Neumann, S., Neuweger, H., Nguyen, N.H., Nothias- Esposito, M., Paolini, J., Phelan, V.V., Pluskal, T., Quinn, R.A., Rogers, S., Shrestha, B., Tripathi, A., van der Hooft, J.J.J., Vargas, F., Weldon, K.C., Witting, M., Yang, H., Zhang, Z., Zubeil, F., Kohlbacher, O., B¨ocker, S., Alexandrov, T., Bandeira, N., Wang, M., Dorrestein, P.C., 2020. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods 17, 905-908. https://doi.org/ 10.1038/s41592-020-0933-6.
  • Okubo, K., Yoshiki, Y., 2000. The role of triterpenoid on reactive oxygen scavenging system: approach from the new chemiluminescence system (XYZ system). Biofactors 13, 219-223. https://doi.org/10.1002/biof.5520130134.
  • Oliveira Junior, A., Castro, C., Oliveira, F.A., Klepker, D., 2020. Fertilidade do solo e avalictao do estado nutricional da Soja. In: Seixas, C.D.S., Neumaier, N., Balbinot Junior, A.A., Krzyzanowski, F.C., Leite, R.M.V.B.C. (Eds.), Tecnologias de productao de soja. Embrapa Soja, Londrina, pp. 133-184. ISSN 2176-2902.
  • Pandey, G.K., Mahiwal, S., 2020. Role of potassium in plants. In: Springer Briefs in Plant Science. Springer International Publishing, Cham. https://doi.org/10.1007/978-3- 030-45953-6.
  • Parvej, M.R., Slaton, N.A., Purcell, L.C., Roberts, T.L., 2015. Potassium fertility effects yield components and seed potassium concentration of determinate and indeterminate soybean. Agron. J. 107, 943-950. https://doi.org/10.2134/ agronj14.0464.
  • Pauletti, V., Motta, A.C.V., 2019. Manual de adubactao e calagem para o estado do paran´a, 2nd. Sociedade Brasileira de Ciˆencia do Solo - Nucleo Estadual Paran´a, Curitiba.
  • Perrenoud, S., 1990. Potassium and plant health. International Potash Institute Bern, Switzerland 2, 7-12. EPI Research Topics, 3.
  • Piubelli, G.C., Hoffmann-Campo, C.B., de Arruda, I.C., Franchini, J.C., Lara, F.M., 2003. Flavonoid increase in soybean as a response to Nezara viridula injury and its effect on insect-feeding preference. J. Chem. Ecol. 29, 1223-1233. https://doi.org/10.1023/ A:1023889825129.
  • Piubelli, G.C., Hoffmann-Campo, C.B., Moscardi, F., Miyakubo, S.H., Neves De Oliveira, M.C., 2005. Are chemical compounds important for soybean resistance to Anticarsia gemmatalis? J. Chem. Ecol. 31, 1509-1525. https://doi.org/10.1007/ s10886-005-5794-z.
  • Pospiˇsil, P., 2016. Production of reactive oxygen species by photosystem II as a response to light and temperature stress. Front. Plant Sci. 7, 1-12. https://doi.org/10.3389/ fpls.2016.01950.
  • Potash Phosphate Institute, 1998. Effects of potassium on plant diseases. Better Crops with Plant Food. Norcross, Georgia, USA. 82 (3), 37-39. ISSN 0006-0089.
  • Prasad, D., Singh, A., Singh, R., 2010. Management of sheath blight of rice with integrated nutrients. Indian Phytopathol. 63 (1), 11-15.
  • Rice-Evans, C., Miller, N., Paganga, G., 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci. 2, 152-159. https://doi.org/10.1016/S1360-1385(97) 01018-2.
  • Rubin, B., Penner, D., Saettler, A.W., 1983. Induction of isoflavonoid production in Phaseolus Vulgaris L. leaves by ozone, sulfur dioxide and herbicide stress. Environ. Toxicol. Chem. 2, 295-306. https://doi.org/10.1002/etc.5620020305.
  • Schrimpe-Rutledge, A.C., Codreanu, S.G., Sherrod, S.D., McLean, J.A., 2016. Untargeted metabolomics strategies - challenges and emerging directions. J. Am. Soc. Mass Spectrom. 27, 1897-1905. https://doi.org/10.1007/s13361-016-1469-y.
  • Seguin, P., Zheng, W., 2006. Potassium, phosphorus, sulfur, and boron fertilization effects on soybean isoflavone content and other seed characteristics. J. Plant Nutr. 29, 681-698. https://doi.org/10.1080/01904160600564477.
  • Seixas, C.D.S., Soares, R.M., Godoy, C.V., Meyer, M.C., Costamilan, L.M., Dias, W.P., Almeida, A ´.M.R., 2020. Manejo de doencas. In: Seixas, C.D.S., Neumaier, N., Junior, A.A.B., Krzyzanowski, F.C., Leite, R.M. (Eds.), Tecnologias de productao de soja. Embrapa Soja, Londrina, pp. 227-264. ISSN 2176-2902.
  • Severtson, D., Callow, N., Flower, K., Neuhaus, A., Olejnik, M., Nansen, C., 2016. Unmanned aerial vehicle canopy reflectance data detects potassium deficiency and green peach aphid susceptibility in canola. Precis. Agric. 17, 659-677. https://doi. org/10.1007/s11119-016-9442-0.
  • Shankar, A., Singh, A., Kanwar, P., Srivastava, A.K., Pandey, A., Suprasanna, P., Kapoor, S., Pandey, G.K., 2013. Gene expression analysis of rice seedling under potassium deprivation reveals major changes in metabolism and signaling components. PLoS One 8, e70321. https://doi.org/10.1371/journal.pone.0070321.
  • Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T., 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498-2504. https:// doi.org/10.1101/gr.1239303.
  • Shen, W., Guo, R., Zhao, Y., Liu, D., Chen, J., Miao, N., Gao, S., Zhang, T., Shi, L., 2021. Nutrient reabsorption mechanism adapted to low phosphorus in wild and cultivated soybean varieties. J. Plant Growth Regul. https://doi.org/10.1007/s00344-021- 10495-z.
  • Simons, R., Vincken, J.-P., Roidos, N., Bovee, T.F.H., van Iersel, M., Verbruggen, M.A., Gruppen, H., 2011. Increasing soy isoflavonoid content and diversity by simultaneous malting and challenging by a fungus to modulate estrogenicity. J. Agric. Food Chem. 59, 6748-6758. https://doi.org/10.1021/jf2010707.
  • Soil Survey Staff, 2014. Keys to soil taxonomy, 14th. Department of Agriculture (USDA) Natural Resources Conservation Service, Washington, DC.
  • Song, H.-H., Ryu, H.W., Lee, K.J., Jeong, I.Y., Kim, D.S., Oh, S.-R., 2014. Metabolomics investigation of flavonoid synthesis in soybean leaves depending on the growth stage. Metabolomics 10, 833-841. https://doi.org/10.1007/s11306-014-0640-3.
  • Stewart, G.R., Larher, F., 1980. Accumulation of amino acids and related compounds in relation to environmental stress. In: Amino Acids and Derivatives. Elsevier,
  • Sumner, L.W., Amberg, A., Barrett, D., Beale, M.H., Beger, R., Daykin, C.A., Fan, T.W.M., Fiehn, O., Goodacre, R., Griffin, J.L., Hankemeier, T., Hardy, N., Harnly, J., Higashi, R., Kopka, J., Lane, A.N., Lindon, J.C., Marriott, P., Nicholls, A.W., Reily, M. D., Thaden, J.J., Viant, M.R., 2007. Proposed minimum reporting standards for chemical analysis. Metabolomics 3, 211-221. https://doi.org/10.1007/s11306-007- 0082-2.
  • Szakiel, A., Paczkowski, C., Henry, M., 2011. Influence of environmental abiotic factors on the content of saponins in plants. Phytochemistry Rev. 10, 471-491. https://doi. org/10.1007/s11101-010-9177-x.
  • Tantriani, T.S., Cheng, W., Saito, K., Oikawa, A., Purwanto, B.H., Tawaraya, K., 2020. Metabolomic analysis of night-released soybean root exudates under high- and low-K conditions. Plant Soil 456, 259-276. https://doi.org/10.1007/s11104-020-04715-w.
  • Tiku, A.R., 2020. Antimicrobial compounds (phytoanticipins and phytoalexins) and their role in plant defense. In: M´erillon, J.-M., Ramawat, K.G. (Eds.), Co-Evolution of Secondary Metabolites. Springer Nature Switzerland, Gewerbestrasse, pp. 845-868. https://doi.org/10.1007/978-3-319-96397-6_63.
  • Toda, S., Shirataki, Y., 1999. Inhibitory effects of isoflavones on lipid peroxidation by reactive oxygen species. Phytother Res. 13, 163-165. https://doi.org/10.1002/ (SICI)1099-1573(199903)13:2%3C163::AID-PTR405%3E3.0.CO;2-#.
  • Tripathi, D.K., Singh, Shweta, Gaur, S., Singh, Swati, Yadav, V., 2018. Acquisition and homeostasis of iron in higher plants and their probable role in abiotic stress tolerance. Front. Environ. Sci. 5, 1-15. https://doi.org/10.3389/fenvs.2017.00086.
  • Troufflard, S., Mullen, W., Larson, T.R., Graham, I.A., Crozier, A., Amtmann, A., Armengaud, P., 2010. Potassium deficiency induces the biosynthesis of oxylipins and glucosinolates in Arabidopsis thaliana. BMC Plant Biol. 10, 172. https://doi.org/ 10.1186/1471-2229-10-172.
  • Tsugawa, H., Cajka, T., Kind, T., Ma, Y., Higgins, B., Ikeda, K., Kanazawa, M., VanderGheynst, J., Fiehn, O., Arita, M., 2015. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 12, 523-526. https://doi.org/10.1038/nmeth.3393.
  • Tsugawa, H., Kind, T., Nakabayashi, R., Yukihira, D., Tanaka, W., Cajka, T., Saito, K., Fiehn, O., Arita, M., 2016. Hydrogen rearrangement rules: computational MS/MS fragmentation and structure elucidation using MS-FINDER software. Anal. Chem. 88, 7946-7958. https://doi.org/10.1021/acs.analchem.6b00770.
  • Sugiyama, R., Yamamoto, H., Nakaya, T., Yamazaki, M., Kooke, R., Bac-Molenaar, J. A., Oztolan-Erol, N., Keurentjes, J.J.B., Arita, M., Saito, K., 2019. A cheminformatics approach to characterize metabolomes in stable-isotope-labeled organisms. Nat. Methods 16, 295-298. https://doi.org/10.1038/s41592-019-0358-2.
  • Tsuno, Y., Fujimatsu, T., Endo, K., Sugiyama, A., Yazaki, K., 2018. Soyasaponins: a new class of root exudates in soybean (Glycine max). Plant Cell Physiol. 59, 366-375. https://doi.org/10.1093/pcp/pcx192.
  • Tugizimana, F., Steenkamp, P., Piater, L., Dubery, I., 2016. A conversation on data mining strategies in LC-MS untargeted metabolomics: pre-processing and pretreatment Steps. Metabolites 6, 40. https://doi.org/10.3390/metabo6040040.
  • USPEA, 1996. Soil screening guidance: technical background document, 2nd. Office of Solid Waste and Emergency Response, Washington, DC.
  • Vanderplanck, M., Glauser, G., 2018. Integration of non-targeted metabolomics and automated determination of elemental compositions for comprehensive alkaloid profiling in plants. Phytochemistry 154, 1-9. https://doi.org/10.1016/j. phytochem.2018.06.011.
  • Yu, O., Rahman, M., Islam, R., 2012. Soybean (Glycine max L. Merr.) seed composition response to soil flooding stress. J. Food Agric. Environ. 10 (1), 795-801.
  • Vyn, T.J., Yin, X., Bruulsema, T.W., Jackson, C.-J.C., Rajcan, I., Brouder, S.M., 2002. Potassium fertilization effects on isoflavone concentrations in soybean [Glycine max (L.) Merr.]. J. Agric. Food Chem. 50, 3501-3506. https://doi.org/10.1021/ jf0200671.
  • Wade, A.M., Tucker, H.N., 1998. Antioxidant characteristics of L -histidine. J. Nutr. Biochem. 9, 308-315. https://doi.org/10.1016/S0955-2863(98)00022-9.
  • Walkley, A., Black, I.A., 1934. An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 37, 29-38. https://doi.org/10.1097/00010694-193401000-00003.
  • Walter, A.J., DiFonzo, C.D., 2007. Soil potassium deficiency affects soybean phloem nitrogen and soybean aphid populations. Environ. Entomol. 36, 26-33. https://doi. org/10.1603/0046-225X.
  • Wang, M., Zheng, Q., Shen, Q., Guo, S., 2013. The critical role of potassium in plant stress response. Int. J. Mol. Sci. 14, 7370-7390. https://doi.org/10.3390/ ijms14047370.
  • Dorrestein, K., Duggan, B.M., Almaliti, J., Allard, P.-M., Phapale, P., Nothias, L.-F., Alexandrov, T., Litaudon, M., Wolfender, J.-L., Kyle, J.E., Metz, T.O., Peryea, T., Nguyen, D.-T., VanLeer, D., Shinn, P., Jadhav, A., Muller, R., Waters, K.M., Shi, W., Liu, X., Zhang, L., Knight, R., Jensen, P.R., Palsson, B.O., Pogliano, K., Linington, R. G., Guti´errez, M., Lopes, N.P., Gerwick, W.H., Moore, B.S., Dorrestein, P.C., Bandeira, N., 2016. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat. Biotechnol. 34, 828-837. https://doi.org/10.1038/nbt.3597.
  • Weinert, C.H., Sonntag, F., Egert, B., Pawelzik, E., Kulling, S.E., Smit, I., 2021. The effect of potassium fertilization on the metabolite profile of tomato fruit (Solanum lycopersicum L.). Plant Physiol. Biochem. 19, 89-99. https://doi.org/10.1016/j. plaphy.2020.12.010.
  • Wu, W., Zhang, Q., Zhu, Y., Lam, H.-M., Cai, Z., Guo, D., 2008. Comparative metabolic profiling reveals secondary metabolites correlated with soybean salt tolerance. J. Agric. Food Chem. 56, 11132-11138. https://doi.org/10.1021/jf8024024.
  • Yang, L., Wen, K.S., Ruan, X., Zhao, Y.X., Wei, F., Wang, Q., 2018. Response of plant secondary metabolites to environmental factors. Molecules 23, 762. https://doi.org/ 10.3390/molecules23040762.
  • Yates, P.S., Roberson, J., Ramsue, L.K., Song, B.-H., 2021. Bridging the gaps between plant and human health: a systematic review of soyasaponins. J. Agric. Food Chem. 69, 14387-14401. https://doi.org/10.1021/acs.jafc.1c04819.
  • Yoshiki, Y., Okubo, K., 1995. Active oxygen scavenging activity of DDMP (2,3-Dihydro- 2,5-dihydroxy-6-methyl-4H -pyran-4-one) saponin in soybean seed. Biosci. Biotechnol. Biochem. 59, 1556-1557. https://doi.org/10.1271/bbb.59.1556.
  • Yoshiki, Y., Kudou, S., Okubo, K., 1998. Relationship between chemical structures and biological activities of triterpenoid saponins from soybean. Biosci. Biotechnol. Biochem. 62, 2291-2299. https://doi.org/10.1271/bbb.62.2291.
  • Yuk, H.J., Curtis-Long, M.J., Ryu, H.W., Jang, K.C., Seo, W.D., Kim, J.Y., Kang, K.Y., Park, K.H., 2011. Pterocarpan profiles for soybean leaves at different growth stages and investigation of their glycosidase inhibitions. J. Agric. Food Chem. 59, 12683-12690. https://doi.org/10.1021/jf203326c.
  • Zhao, M., Guo, R., Li, M., Liu, Y., Wang, X., Fu, H., Wang, S., Liu, X., Shi, L., 2020. Physiological characteristics and metabolomics reveal the tolerance mechanism to low nitrogen in Glycine soja leaves. Physiol. Plantarum 168, 819-834. https://doi. org/10.1111/ppl.13022.
  • Zhao, S.-Y., Liu, Z.-L., Shu, Y.-S., Wang, M.-L., He, D., Song, Z.-Q., Zeng, H.-L., Ning, Z.- C., Lu, C., Lu, A.-P., Liu, Y.-Y., 2017. Chemotaxonomic classification applied to the identification of two closely-related Citrus TCMs using UPLC-Q-TOF-MS-based metabolomics. Molecules 22, 1721. https://doi.org/10.3390/molecules22101721.
  • Zhu, H., Lin, H., Tan, J., Wang, C., Wang, H., Wu, F., Dong, Q., Liu, Y., Li, P., Liu, J., 2018. UPLC-QTOF/MS-based nontargeted metabolomic analysis of mountain- and garden-cultivated ginseng of different ages in Northeast China. Molecules 24, 33. https://doi.org/10.3390/molecules24010033.
  • Zs-Nagy, I., Floyd, R.A., 1984. Hydroxyl free radical reactions with amino acids and proteins studied by electron spin resonance spectroscopy and spin-trapping. Biochim. Biophys. Acta Protein Struct. Mol. Enzymol. 790, 238-250. https://doi. org/10.1016/0167-4838(84)90028-1.