Published August 1, 2019 | Version 0.1.0
Dataset Open

Subset of Global Sub-Daily Rainfall (GSDR) dataset

  • 1. Newcastle University
  • 2. University of New South Wales
  • 3. Met Office
  • 4. Newcastle University, National Research Institute of Science and Technology for Environment and Agriculture

Contributors

  • 1. Newcastle University

Description

A subset of the Global Sub-Daily Rainfall (GSDR) dataset, including the countries marked as 'open' in Table A2 of the accompanying paper (DIO: 10.1175/JCLI-D-18-0143.1).

The dataset includes archive data, raw data, quality control flags and quality controlled data and raw data. Example quality control files (with headers), raw data processing scripts and INTENSE Python code are also included.

Notes

The INTENSE project is funded through the European Research Council (Grant ERC-2013-CoG-617329) and funds EL, HJF, SB, X-FL, and SG. HJF is also funded by the Wolfson Foundation and the Royal Society as a Royal Society Wolfson Research Merit Award (WM140025) holder. LA is supported by Australian Research Council Centre of Excellence Grant CE17010023 and Discovery Project Grant DP160103439. RJHD was supported by the Met Office Hadley Centre Climate Programme funded by BEIS and Defra. A huge amount of thanks is owed to the many people who have helped identify and provide data for this paper, particularly those outlined in Tables A1 and A2 in appendix A (DOI: 10.1175/JCLI-D-18-0143.1).

Files

Example raw data processing scripts.zip

Files (1.7 GB)

Name Size Download all
md5:d1752e909fc8ef3cc4272586c41e8adc
5.9 kB Preview Download
md5:2472c91aab0df83a2d3b81a58184b5b1
3.2 MB Preview Download
md5:3a58466feba7b0d6028d7601610560d3
3.0 MB Preview Download
md5:509a09cd3b9f691f637a47a9d3327953
24.1 kB Download
md5:40bf2ee5df6e0704143e1781b7d819b3
5.1 MB Preview Download
md5:5326ae80021022875188d00bf2bcd1fe
3.2 MB Preview Download
md5:fea78d6f5fa827d332968666db09de6c
46.8 MB Preview Download
md5:aa2b75742978d99f8570dcf8272a85b9
6.0 MB Preview Download
md5:765a129b12903830815e050d74907fce
236.2 MB Preview Download
md5:e672d1cd7c7f24ae6d2bf9475b07cccd
125.3 MB Preview Download
md5:a501ca301a75f4beb75650f3575fd5e7
23.4 MB Preview Download
md5:9d5932973be0b992039c2cb08901c12a
125.6 MB Preview Download
md5:0bf9332ddab6f4da41fa225239c3cea3
492.6 MB Preview Download
md5:a4da5cd5ad71ba6e7cd671016e76f9f3
2.2 MB Preview Download
md5:b998dab3e5729b97668c8e003bda4411
1.3 MB Preview Download
md5:628155f1bf0e2421f0945636628ebfae
19.1 MB Preview Download
md5:5ec0106bc60f48aa2d39078f8cb96476
2.6 MB Preview Download
md5:573f431dd59920d73f8999858f98dad4
59.4 MB Preview Download
md5:6a7cbbe2bc8e3d577a3ee88877cae8e4
34.6 MB Preview Download
md5:26c46f160890ed7cec8625c7d46aa332
5.1 MB Preview Download
md5:f143d9070b9378d7ddd3631acdc20ebd
2.3 MB Preview Download
md5:da1fb6e8698aec1f03ab0244a5f8f5fc
45.3 MB Preview Download
md5:227431a92999505035e59cb08d898163
115.3 MB Preview Download
md5:cec9f43c9b77ed32630629e38ed62836
2.7 MB Preview Download
md5:4ad44a5b8cdcede71c75168a3cd471f5
1.5 MB Preview Download
md5:029a15baafb4354b7c2e41f5e2a9ea46
20.8 MB Preview Download
md5:8c84469fa1c4af9bd53f78e759d540e3
2.9 MB Preview Download
md5:ac36d790f6e7b2a0b3bab586f3446284
62.4 MB Preview Download
md5:0bc559786479f963020f3322c0555b2c
40.7 MB Preview Download
md5:382108001e8d4cc20c33b7b5ed106583
5.5 MB Preview Download
md5:787ea99ef6eaee9bd3b64de8ac779215
49.3 MB Preview Download
md5:7032c6b099a49d38c7b25feff402df99
115.5 MB Preview Download
md5:1d9ce29325568204111795cb425c8a20
6.8 kB Download

Additional details

Related works

Is supplement to
Journal article: 10.1175/JCLI-D-18-0143.1 (DOI)

References

  • Lewis et al (2019) gives a detailed description of this dataset.