DNA sensing by electrocatalysis with hemoglobin
- 1. California Institute of Technology
Description
Electrocatalysis offers a means of electrochemical signal amplification, yet in DNA-based sensors, electrocatalysis has required high-density DNA films and strict assembly and passivation conditions. Here, we describe the use of hemoglobin as a robust and effective electron sink for electrocatalysis in DNA sensing on low-density DNA films. Protein shielding of the heme redox center minimizes direct reduction at the electrode surface and permits assays on low-density DNA films. Electrocatalysis with methylene blue that is covalently tethered to the DNA by a flexible alkyl chain linkage allows for efficient interactions with both the base stack and hemoglobin. Consistent suppression of the redox signal upon incorporation of a single cytosine-adenine (CA) mismatch in the DNA oligomer demonstrates that both the unamplified and the electrocatalytically amplified redox signals are generated through DNA-mediated charge transport. Electrocatalysis with hemoglobin is robust: It is stable to pH and temperature variations. The utility and applicability of electrocatalysis with hemoglobin is demonstrated through restriction enzyme detection, and an enhancement in sensitivity permits femtomole DNA sampling.
Notes
Files
Pheeney-2012-DNA sensing by electrocatalysis.pdf
Files
(1.6 MB)
Name | Size | Download all |
---|---|---|
md5:6c3bf44d93eaf2f1173ce55eb4498881
|
1.6 MB | Preview Download |
Additional details
Related works
- Is published in
- Journal article: 10.1073/pnas.1201551109 (DOI)