Published November 13, 2023 | Version v1
Project deliverable Open

I3D:bio's OMERO training material: Re-usable, adjustable, multi-purpose slides for local user training

  • 1. ROR icon German Cancer Research Center
  • 2. Department Enabling Technology
  • 3. Single-cell Open Lab
  • 4. ROR icon Heinrich Heine University Düsseldorf
  • 5. Center for Advanced Imaging
  • 6. Max Planck Institute for Evolutionary Biology, Plön, Germany
  • 7. ROR icon Osnabrück University
  • 8. ROR icon Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases
  • 9. ROR icon University of Cologne
  • 10. ROR icon University of Münster

Description

The open-source software OME Remote Objects (OMERO) is a data management software that allows storing, organizing, and annotating bioimaging/microscopy data. OMERO has become one of the best-known systems for bioimage data management in the bioimaging community. The Information Infrastructure for BioImage Data (I3D:bio) project facilitates the uptake of OMERO into research data management (RDM) practices at universities and research institutions in Germany. Since the adoption of OMERO into researchers' daily routines requires intensive training, a broad portfolio of training resources for OMERO is an asset. On top of using the OMERO guides curated by the Open Microscopy Environment Consortium (OME) team, imaging core facility staff at institutions where OMERO is used often prepare additional material tailored to be applicable for their own OMERO instances. Based on experience gathered in the Research Data Management for Microscopy group (RDM4mic) in Germany, and in the use cases in the I3D:bio project, we created a set of reusable, adjustable, openly available slide decks to serve as the basis for tailored training lectures, video tutorials, and self-guided instruction manuals directed at beginners in using OMERO. The material is published as an open educational resource complementing the existing resources for OMERO contributed by the community.

Notes

Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project I3D:bio, grant number 462231789

Notes

Supported by German BioImaging - Society for Microscopy and Image Analysis (GerBI-GMB)

Files

2023_Schmidt_etal_I3Dbio_OMERO_Training_Material_10.5281_zenodo.8323588.pdf

Files (143.4 MB)

Name Size Download all
md5:f705612553155693baae413401f0395b
1.3 MB Download
md5:24a079aba85ed2b64fe5095be0e3c3bc
797.9 kB Preview Download
md5:e592e9d1bcdc3c7ecb8b3d940a386e1d
1.3 MB Download
md5:da28caed57036e7434b91f3411af729e
5.7 MB Download
md5:868792f34e5bba746e630dede6610c7e
1.9 MB Preview Download
md5:06de513670b6b1b6e7c405eb83f79d67
5.7 MB Download
md5:ef1dbeffc799d0207c4efdd153439e06
684.8 kB Download
md5:40fd57825d954802d26ab0833ee6c3b2
589.7 kB Preview Download
md5:4290cb7b52939b20d039fa837fd948fa
675.3 kB Download
md5:b8d724cc197b32e054fbb6c754c4e4e7
984.8 kB Download
md5:51325f323bb080b29b24ab6e6c9c0b6e
865.3 kB Preview Download
md5:5e9c6a056699f06e8f528d76de421940
2.8 MB Download
md5:4b7e0c044a1fef0ee687b28967734ce7
3.1 MB Download
md5:beafdf3e2ca1b13857210328919ed889
1.5 MB Preview Download
md5:675a6e6cac54906ac42fb3840461d430
3.1 MB Download
md5:c8d1fdf2cc4f946fddea918a1cd26fc3
3.0 MB Download
md5:96b747af87fe104415ea8eb1de7f86ce
971.3 kB Preview Download
md5:b47cf99f26a6f16a9e7a205c1c2ebbf8
3.0 MB Download
md5:1a3dd76d02b84e0ec35b92ae613c2bc0
7.5 MB Download
md5:e1924d4922e9bfc0119030a4f1d772ec
2.5 MB Preview Download
md5:7842326ed9d012c333f247709eea6f07
7.5 MB Download
md5:d0ac1c260ddb73bfdf21480dff6ec011
1.3 MB Download
md5:27e0e19d25277882c6163b911a4b2efe
725.5 kB Preview Download
md5:b065ae51959566920e06cf478de91be1
1.4 MB Download
md5:5425101ac41368f67e7f3229cf2e2c07
10.4 MB Download
md5:d5849299e8ce72bcd9a3e979d4178b9c
4.5 MB Preview Download
md5:e2e6af05aba857c455c42acef3e12645
10.4 MB Download
md5:e1e1010dc418b3fd699d8e71be638347
9.2 MB Download
md5:fae1ec87417ec7f12676c6995a3b9ba6
3.3 MB Preview Download
md5:7c4594cddd748e53e92d355b38a45478
11.4 MB Download
md5:714d580a63f8fc4e0dc8275e9141d5f0
2.6 MB Download
md5:247355520c030deb07d6dc6aabc490e7
2.2 MB Preview Download
md5:92dbfe4aba95c37947be59d013a51376
2.6 MB Download
md5:e01c915ff0c427df950733a9457d6b36
8.5 MB Download
md5:452e2da287db2533627efcb1f5be9bf2
3.8 MB Preview Download
md5:2e016109a587c2ffd95578b454bfd421
8.5 MB Download
md5:bf8a06b1be36198fc8cfee5ead540347
2.9 MB Download
md5:5699b15469fb1bda3a388cf101bfe55a
1.1 MB Preview Download
md5:552b6c6f6d02dba9c21b3b60bd1a24e7
2.8 MB Download
md5:d8093b40fbc8a964902dfda2056fbc32
201.7 kB Preview Download

Additional details

References

  • Kemmer, I., et al., Building a FAIR image data ecosystem for microscopy communities. Histochem Cell Biol, 2023. 160(3): p. 199-209. DOI: 10.1007/s00418-023-02203-7
  • Ouyang, W. and C. Zimmer, The imaging tsunami: Computational opportunities and challenges. Current Opinion in Systems Biology, 2017. 4: p. 105-113. DOI: 10.1016/j.coisb.2017.07.011
  • Andreev, A. and D.E.S. Koo, Practical Guide to Storage of Large Amounts of Microscopy Data. Microscopy Today, 2020. 28(4): p. 42-45. DOI: 10.1017/S1551929520001091
  • Goldberg, I.G., et al., The Open Microscopy Environment (OME) Data Model and XML file: open tools for informatics and quantitative analysis in biological imaging. Genome Biol, 2005. 6(5): p. R47. DOI: 10.1186/gb-2005-6-5-r47
  • Allan, C., et al., OMERO: flexible, model-driven data management for experimental biology. Nat Methods, 2012. 9(3): p. 245-53. DOI: 10.1038/nmeth.1896
  • Linkert, M., et al., Metadata matters: access to image data in the real world. J Cell Biol, 2010. 189(5): p. 777-82. DOI: 10.1083/jcb.201004104
  • Schmidt, C., Hanne, J., et al., Research data management for bioimaging: the 2021 NFDI4BIOIMAGE community survey. F1000Res, 2022. 11: p. 638. DOI: 10.12688/f1000research.121714.2
  • Wilkinson, M.D., et al., The FAIR Guiding Principles for scientific data management and stewardship. Sci Data, 2016. 3: p. 160018. DOI: 10.1038/sdata.2016.18
  • Rigano, A., et al., Micro-Meta App: an interactive tool for collecting microscopy metadata based on community specifications. Nat Methods, 2021. 18(12): p. 1489-1495. DOI: 10.1038/s41592-021-01315-z
  • Ryan, J., et al., MethodsJ2: a software tool to capture metadata and generate comprehensive microscopy methods text. Nat Methods, 2021. 18(12): p. 1414-1416. DOI: 10.1038/s41592-021-01290-5
  • Kunis, S., et al., MDEmic: a metadata annotation tool to facilitate management of FAIR image data in the bioimaging community. Nat Methods, 2021. 18(12): p. 1416-1417. DOI: 10.1038/s41592-021-01288-z
  • Hammer, M., et al., Towards community-driven metadata standards for light microscopy: tiered specifications extending the OME model. Nat Methods, 2021. 18(12): p. 1427-1440. DOI: 10.1038/s41592-021-01327-9
  • Sarkans, U., et al., REMBI: Recommended Metadata for Biological Images-enabling reuse of microscopy data in biology. Nature Methods, 2021. DOI: 10.1038/s41592-021-01166-8
  • Sivagurunathan, S., et al., Bridging imaging users to imaging analysis - A community survey. J Microsc, 2023. DOI: 10.1111/jmi.13229
  • Power, R., Maximizing the Impact of Instructional Video Length., in Integration of Instructional Design and Technology: Volume 2. 2022: Pressbooks.com
  • Guo PJ, K.J. and R. R. How video production affects student engagement: an empirical study of MOOC videos. in First ACM Conference on Learning at Scale. 2014. New York: L@S'14 Proceedings of the First ACM Conference on Learning at Scale. DOI: 10.1145/2556325.2566239
  • Hartley, M., et al., The BioImage Archive - Building a Home for Life-Sciences Microscopy Data. J Mol Biol, 2022. 434(11): p. 167505. DOI: 10.1016/j.jmb.2022.167505
  • Rocca-Serra, P., et al., ISA software suite: supporting standards-compliant experimental annotation and enabling curation at the community level. Bioinformatics, 2010. 26(18): p. 2354-6. DOI: 10.1093/bioinformatics/btq415
  • Schindelin, J., et al., Fiji: an open-source platform for biological-image analysis. Nat Methods, 2012. 9(7): p. 676-82. DOI: 10.1038/nmeth.2019
  • Schindelin, J., et al., The ImageJ ecosystem: An open platform for biomedical image analysis. Mol Reprod Dev, 2015. 82(7-8): p. 518-29. DOI: 10.1002/mrd.22489
  • Jamali, N., et al., 2020 BioImage Analysis Survey: Community experiences and needs for the future. Biological Imaging, 2022. 1: p. e4. DOI: 10.1017/S2633903X21000039
  • Pouchin, P., et al., Easing batch image processing from OMERO: a new toolbox for ImageJ. F1000Res, 2022. 11: p. 392. DOI: 10.12688/f1000research.110385.2
  • Garcia, L., et al., Ten simple rules for making training materials FAIR. PLoS Comput Biol, 2020. 16(5): p. e1007854. DOI: 10.1371/journal.pcbi.1007854

Subjects