Published September 8, 2020 | Version 4
Other Open

Análisis de poder estadístico y cálculo de tamaño de muestra en R: Guía práctica

  • 1. Universidad El Bosque

Description

Esta guía práctica acompaña la serie de videos Poder estadístico y tamaño de muestra en R, de mi canal de YouTube Investigación Abierta, que recomiendo ver antes de leer este documento. Contiene una explicación general del análisis de poder estadístico y cálculo de tamaño de muestra, centrándose en el procedimiento para realizar análisis de poder y tamaños de muestra en jamovi y particularmente en R, usando los paquetes pwr (para diseños sencillos) y Superpower (para diseños factoriales más complejos). La sección dedicada a pwr está ampliamente basada en este video de Daniel S. Quintana (2019).

Notes

Errata: esta versión 4 corrige un error importante. En las versiones anteriores de esta guía, en la sección 3 —dedicada al módulo jpower de jamovi— se había interpretado el tamaño de efecto solicitado por jamovi (δ) como delta de Cliff. Sin embargo, se refiere sencillamente al efecto en la población (no en la muestra), y es equivalente a la d de Cohen (o g de hedges). El documento se ha corregido y actualizado para reflejar esto.

Files

Análisis de Poder en R.pdf

Files (999.8 kB)

Name Size Download all
md5:e0dad000638914b8d8a6a2b58544be4d
999.8 kB Preview Download

Additional details

Related works

Is supplemented by
Other: 10.17605/OSF.IO/3QX6A (DOI)

References

  • Albers, C., & Lakens, D. (2018). When power analyses based on pilot data are biased: Inaccurate effect size estimators and follow-up bias. Journal of Experimental Social Psychology, 74, 187–195. https://doi.org/10. 1016/j.jesp.2017.09.004
  • Baker, M. (2016). 1,500 scientists lift the lid on reproducibility. Nature News, 533 (7604), 452. https://doi.org/10. 1038/533452a
  • Bakker, A., Cai, J., English, L., Kaiser, G., Mesa, V., & Van Dooren, W. (2019). Beyond small, medium, or large: Points of consideration when interpreting effect sizes. Educational Studies in Mathematics, 102 (1), 1–8. https://doi.org/10.1007/s10649-019-09908-4
  • Benjamin, D. J., Berger, J. O., Johannesson, M., Nosek, B. A., Wagenmakers, E.-J., Berk, R., Bollen, K. A., Brembs, B., Brown, L., Camerer, C., Cesarini, D., Chambers, C. D., Clyde, M., Cook, T. D., De Boeck, P., Dienes, Z., Dreber, A., Easwaran, K., Efferson, C., . . . Johnson, V. E. (2018). Redefine statistical significance. Nature Human Behaviour, 2 (1), 6–10. https://doi.org/10.1038/s41562-017-0189-z
  • Blakesley, R. E., Mazumdar, S., Dew, M. A., Houck, P. R., Tang, G., Reynolds III, C. F., & Butters, M. A. (2009). Comparisons of methods for multiple hypothesis testing in neuropsychological research. Neuropsychology, 23 (2), 255–264. https://doi.org/10.1037/a0012850
  • Bonferroni, C. E. (1936). Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni Del R Istituto Superiore Di Scienze Economiche E Commerciali Di Firenze.
  • Button, K. S., Ioannidis, J. P. A., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S. J., & Munafò, M. R. (2013). Power failure: Why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience, 14 (5), 365–376. https://doi.org/10.1038/nrn3475
  • Caldwell, A. R., & Lakens, D. (2020). Power Analysis with Superpower. https://aaroncaldwell.us/SuperpowerBook/.
  • Caldwell, A. R., Lakens, D., DeBruine, L., & Love, J. (2020). Superpower: Simulation-Based Power Analysis for Factorial Designs.
  • Champely, S., Ekstrom, C., Dalgaard, P., Gill, J., Weibelzahl, S., Anandkumar, A., Ford, C., Volcic, R., & Rosario, H. D. (2020). Pwr: Basic Functions for Power Analysis.
  • Chatham, K. (1999). Planned Contrasts: An Overview of Comparison Methods.
  • Cliff, N. (1996). Ordinal Methods for Behavioral Data Analysis. Psychology Press. https://doi.org/10.4324/ 9781315806730
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Erlbaum.
  • Cohen, J. (1992). A power primer. Psychological Bulletin, 112 (1), 155–159. https://doi.org/10.1037/0033-2909. 112.1.155
  • Correa, J. C. (2020). Scripts en R [Video]. In YouTube. https://www.youtube.com/watch?v=ejQ0BS2gVJI.
  • Correll, J., Mellinger, C., McClelland, G. H., & Judd, C. M. (2020). Avoid Cohen's "Small", "Medium", and "Large" for Power Analysis. Trends in Cognitive Sciences, 24 (3), 200–207. https://doi.org/10.1016/j.tics.2019.12.009
  • Faul, F., Erdfelder, E., Buchner, A., & Lang, A.-G. (2009). Statistical power analyses using G*Power 3.1: Tests for correlation and regression analyses. Behavior Research Methods, 41 (4), 1149–1160. https://doi.org/10.3758/ BRM.41.4.1149
  • Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39 (2), 175–191. https: //doi.org/10.3758/BF03193146
  • Goedhart, J. (2016). Calculation of a distribution free estimate of effect size and confidence intervals using VBA/Excel. bioRxiv, 073999. https://doi.org/10.1101/073999
  • Holm, S. (1979). A Simple Sequentially Rejective Multiple Test Procedure. Scandinavian Journal of Statistics, 6 (2), 65–70.
  • Huberty, C. J., & Lowman, L. L. (2000). Group Overlap as a Basis for Effect Size. Educational and Psychological Measurement, 60 (4), 543–563. https://doi.org/10.1177/0013164400604004
  • Lakens, D. (2017). Equivalence Tests: A Practical Primer for t Tests, Correlations, and Meta-Analyses. Social Psychological and Personality Science. https://doi.org/10.1177/1948550617697177
  • Lakens, D., Adolfi, F. G., Albers, C. J., Anvari, F., Apps, M. A. J., Argamon, S. E., Baguley, T., Becker, R. B., Benning, S. D., Bradford, D. E., Buchanan, E. M., Caldwell, A. R., Van Calster, B., Carlsson, R., Chen, S.-C., Chung, B., Colling, L. J., Collins, G. S., Crook, Z., . . . Zwaan, R. A. (2018). Justify your alpha. Nature Human Behaviour, 2 (3), 168–171. https://doi.org/10.1038/s41562-018-0311-x
  • Lakens, D., & Caldwell, A. R. (2020). Introduction to Superpower. In The Comprehensive R Archive Network. http://shorturl.at/fnDX6.
  • Lakens, D., Scheel, A. M., & Isager, P. M. (2018). Equivalence Testing for Psychological Research: A Tutorial. Advances in Methods and Practices in Psychological Science, 1 (2), 259–269. https://doi.org/10.1177/ 2515245918770963
  • Loken, E., & Gelman, A. (2017). Measurement error and the replication crisis. Science, 355 (6325), 584–585. https://doi.org/10.1126/science.aal3618
  • Macbeth, G., Razumiejczyk, E., & Ledesma, R. D. (2011). Cliffs Delta Calculator: A non-parametric effect size program for two groups of observations. Universitas Psychologica, 10 (2), 545–555. https://doi.org/10.11144/ Javeriana.upsy10-2.cdcp
  • Quintana, D. S. (2017). Statistical considerations for reporting and planning heart rate variability case-control studies. Psychophysiology, 54 (3), 344–349. https://doi.org/10.1111/psyp.12798
  • Quintana, D. S. (2019). A non-technical guide to performing power analysis in R [Video]. In YouTube. https://youtu.be/ZIjOG8LTTh8.
  • Selya, A. S., Rose, J. S., Dierker, L. C., Hedeker, D., & Mermelstein, R. J. (2012). A practical guide to calculating Cohen's f2, a measure of local effect size, from PROC MIXED. Frontiers in Psychology, 3, 111. https://doi.org/ 10.3389/fpsyg.2012.00111
  • Streiner, D. L. (2015). Best (but oft-forgotten) practices: The multiple problems of multiplicityWhether and how to correct for many statistical tests. The American Journal of Clinical Nutrition, 102 (4), 721–728. https: //doi.org/10.3945/ajcn.115.113548