Published November 30, 2020
| Version v1
Journal article
Restricted
Glucosinolate catabolism during postharvest drying determines the ratio of bioactive macamides to deaminated benzenoids in Lepidium meyenii (maca) root flour
Description
Esparza, Eliana, Yi, Winnie, Limonchi, Fabian, Cosio, Eric G. (2020): Glucosinolate catabolism during postharvest drying determines the ratio of bioactive macamides to deaminated benzenoids in Lepidium meyenii (maca) root flour. Phytochemistry (112502) 179: 1-10, DOI: 10.1016/j.phytochem.2020.112502, URL: http://dx.doi.org/10.1016/j.phytochem.2020.112502
Files
Linked records
Oops! Something went wrong while fetching results.
Additional details
Identifiers
- LSID
- urn:lsid:plazi.org:pub:B13EC93E5944141AC42C1F12E01B040B
References
- Agerbirk, N., Olsen, C.E., 2012. Glucosinolate structures in evolution. Phytochemistry 77, 16-45. https://doi.org/10.1016/j.phytochem.2012.02.005.
- Blaˇzevi´c, I., Montaut, S., Burˇcul, F., Olsen, C.E., Burow, M., Rollin, P., Agerbirk, N., 2020. Glucosinolate structural diversity, identification, chemical synthesis and metabolism in plants. Phytochemistry 169, 1. https://doi.org/10.1016/j. phytochem.2019.112100.
- Brown, P.D., Tokuhisa, J.G., Reichelt, M., Gershenzon, J., 2003. Variation of glucosinolate accumulation among different organs and developmental stages of Arabidopsis thaliana. Phytochemistry 62, 471-481. https://doi.org/10.1016/S0031- 9422(02)00549-6.
- Chen, J.J., Zhao, Q.S., Liu, Y.L., Gong, P.F., Cao, L., Wang, X.D., Zhao, B., 2017. Macamides present in the commercial maca (Lepidium meyenii) products and the macamide biosynthesis affected by postharvest conditions. Int. J. Food Prop. 20, 3112-3123. https://doi.org/10.1080/10942912.2016.1274905.
- Chrikishvili, D., Sadunishvili, T., Zaalishvili, G., 2006. Benzoic acid transformation via conjugation with peptides and final fate of conjugates in higher plants. Ecotoxicol. Environ. Saf. 64, 390-399. http://doi:10.1016/j.ecoenv.2005.04.009.
- De Nicola, G.R., Montaut, S., Rollin, P., Nyegue, M., Menut, C., Iori, R., Tatibou¨et, A., 2012. Stability of benzylic-type isothiocyanates in hydrodistillation-mimicking conditions. J. Agric. Food Chem. 61, 137-142. https://doi.org/10.1021/jf3041534.
- Esparza, E., Hadzich, A., Kofer, W., Mith¨ofer, A., Cosio, E.G., 2015. Bioactive Maca (Lepidium meyenii) alkamides are a result of traditional Andean postharvest drying practices. Phytochemistry 116, 138-148. https://doi.org/10.1016/j. phytochem.2015.02.030.
- Fechner, J., Kaufmann, M., Herz, C., Eisenschmidt, D., Lamy, E., Kroh, L.W., Hanschen, F. S., 2018. The major glucosinolate hydrolysis product in rocket (Eruca sativa L.), sativin, is 1,3-thiazepane-2-thione: elucidation of structure, bioactivity, and stability compared to other rocket isothiocyanates. Food Chem. 261, 57-65. https://doi.org/ 10.1016/j.foodchem.2018.04.023.
- Ganzera, M., Zhao, J., Muhammad, I., Khan, I.A., 2002. Chemical profiling and standardization of Lepidium meyenii (Maca) by reversed phase high performance liquid chromatography. Chem. Pharm. Bull. 50, 988-991. https://doi.org/10.1248/ cpb.50.988.
- Gimsing, A.L., Kirkegaard, J.A., 2009. Glucosinolates and biofumigation: fate of glucosinolates and their hydrolysis products in soil. Phytochemistry Rev. 8, 299-310. https://doi.org/10.1007/s11101-008-9105-5.
- G´omez-Alonso, S., Hermosin-Guti´errez, I., Garcia-Romero, E., 2007. Simultaneous HPLC analysis of biogenic amines, amino acids, and ammonium ion as aminoenone derivatives in wine and beer samples. J. Agric. Food Chem. 55, 608-613. https://doi. org/10.1021/jf062820m.
- Halkier, B.A., Gershenzon, J., 2006. Biology and biochemistry of glucosinolates. Annu. Rev. Plant Biol. 57, 303-333. https://doi.org/10.1146/annurev. arplant.57.032905.105228.
- Ibdah, M., Chen, Y.T., Wilkerson, C.G., Pichersky, E., 2009. An aldehyde oxidase in developing seeds of Arabidopsis converts benzaldehyde to benzoic acid. Plant Physiol. 150, 416-423. https://doi.org/10.1104/pp.109.135848.
- Jeschke, V., Gershenzon, J., Vassao, D.G., 2016. Insect detoxification of glucosinolates and their hydrolysis products. Adv. Bot. Res. 80, 199-245. https://doi.org/10.1016/ bs.abr.2016.06.003.
- McCollom, M.M., Villinski, J.R., McPhail, K.L., Craker, L.E., Gafner, S., 2005. Analysis of macamides in samples of Maca (Lepidium meyenii) by HPLC-UV-MS/MS. Phytochem. Anal. 16, 463-469. https://doi.org/10.1002/pca.871.
- Matile, P., 1990. The toxic compartment of plant cells. In: Progress in Plant Cellular and Molecular Biology Current Plant Science and Biotechnology in Agriculture, pp. 557-566. https://doi:10.1007/978-94-009-2103-0_84.
- Moldrup, M.E., Geu-Flores, F., Olsen, C.E., Halkier, B.A., 2011. Modulation of sulfur metabolism enables efficient glucosinolate engineering. BMC Biotechnol. 11, 12. https://doi.org/10.1186/1472-6750-11-12.
- Palani, K., Harbaum-Piayda, B., Meske, D., Keppler, J.K., Bockelmann, W., Heller, K.J., Schwarz, K., 2016. Influence of fermentation on glucosinolates and glucobrassicin degradation products in sauerkraut. Food Chem. 190, 755-762. https://doi.org/ 10.1016/j.foodchem.2015.06.012.
- Platz, S., Kuhn, C., Schiess, S., Schreiner, M., Kemper, M., Pivovarova, O., Pfeiffer, A.F. H., Rohn, S., 2015. Bioavailability and metabolism of benzyl glucosinolate in humans consuming Indian cress (Tropaeolum majus L.). Mol. Nutr. Food Res. 60, 652-660. https://doi.org/10.1002/mnfr.201500633.
- Rabie, M.A., Siliha, H., el-Saidy, S., el-Badawy, A.A., Malcata, F.X., 2011. Reduced biogenic amine contents in sauerkraut via addition of selected lactic acid bacteria. Food Chem. 129, 1778-1782. https://doi.org/10.1016/j.foodchem.2011.05.10600.
- Redruello, B., Ladero, V., Cuesta, I., Alvarez-Buylla ´, J.R., Martin, M.C., Fern´andez, M., Alvarez, M.A., 2013. A fast, reliable, ultra high performance liquid chromatography method for the simultaneous determination of amino acids, biogenic amines and ammonium ions in cheese, using diethyl ethoxymethylenemalonate as a derivatising agent. Food Chem. 139, 1029-1035. https://doi.org/10.1016/j. foodchem.2013.01.071.
- Senger, T., Wichard, T., Kunze, S., Gobel ¨, C., Lerchl, J., Pohnert, G., Feussner, I., 2005. A multifunctional lipoxygenase with fatty acid hydroperoxide cleaving activity from the moss Physcomitrella patens. J. Biol. Chem. 280, 7588-7596. https://doi.org/ 10.1074/jbc.M411738200.
- Simons, S.S., Johnson, D.F., 1978. Reaction of o -phthalaldehyde and thiols with primary amines: fluorescence properties of 1-alkyl(and aryl)thio-2-alkylisoindoles. Anal. Biochem. 90, 705-725. https://doi.org/10.1016/0003-2697(78)90163-X12100.
- Sorensen, J.C., Frandsen, H.B., Jensen, S.K., Kristensen, N.B., Sorensen, S., Sorensen, H., 2016. Bioavailability and in vivo metabolism of intact glucosinolates. Journal of Functional Foods 24, 450-460. https://doi.org/10.1016/j.jff.2016.04.023.
- Traka, M.H., 2016. Health benefits of glucosinolates. Adv. Bot. Res. 80, 247-279. https://doi.org/10.1016/bs.abr.2016.06.004.
- Tang, C.S., Bhothipaksa, K., Frank, H.A., 1972. Bacterial degradation of benzyl isothiocyanate. Appl. Microbiol. 23, 1145-1148.
- Vaughn, S., Berhow, M., 2005. Glucosinolate hydrolysis products from various plant sources: pH effects, isolation, and purification. Ind. Crop. Prod. 21, 193-202. https://doi.org/10.1016/j.indcrop.2004.03.004.
- Wittstock, U., Kurzbach, E., Steiner, A.M., Stauber, E.J., 2016. Glucosinolate breakdown. Adv. Bot. Res. 80, 125-169. https://doi.org/10.1016/bs.abr.2016.06.006.
- Wuensch, C., Lechner, H., Glueck, S.M., Zangger, K., Hall, M., Faber, K., 2013. Asymmetric biocatalytic Cannizzaro-type reaction. ChemCatChem 5, 1744-1748. https://doi.org/10.1002/cctc.201300028.
- Y´abar, E., Pedreschi, R., Chirinos, R., Campos, D., 2011. Glucosinolate content and myrosinase activity evolution in three maca (Lepidium meyenii Walp.) ecotypes during preharvest, harvest and postharvest drying. Food Chem. 127, 1576-1583. https://doi.org/10.1016/j.foodchem.2011.02.021.
- Zhang, S.Z., Yang, F., Shao, J.L., Pu, H.M., Ruan, Z.Y., Yang, W.L., Li, H., 2020. The metabolic formation profiles of macamides accompanied by the conversion of glucosinolates in maca (Lepidium meyenii) during natural air drying. Int. J. Food Sci. Technol. 55, 2428-2440. https://doi.org/10.1111/ijfs.14493.