Published June 30, 2020 | Version v1
Journal article Restricted

Comparative metabolomics analysis of the response to cold stress of resistant and susceptible Tibetan hulless barley (Hordeum distichon)

  • 1. State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, 850002, China & Agricultural Research Institute, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, 850002, China

Description

Yang, Chunbao, Yang, Haizhen, Xu, Qijun, Wang, Yulin, Sang, Zha, Yuan, Hongjun (2020): Comparative metabolomics analysis of the response to cold stress of resistant and susceptible Tibetan hulless barley (Hordeum distichon). Phytochemistry (112346) 174: 1-8, DOI: 10.1016/j.phytochem.2020.112346, URL: http://dx.doi.org/10.1016/j.phytochem.2020.112346

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:4136FFFCFF8AFFBAFFA6C37AC303CF5F

Related works

References

  • Alcazar, R., Cuevas, J.C., Planas, J., Zarza, X., Bortolotti, C., Carrasco, P., 2011. Integration of polyamines in the cold acclimation response. Plant Sci. 180, 31-38.
  • Becker, C., Klaering, H.-P., Kroh, L., Krumbein, A., 2014. Cool-cultivated red leaf lettuce accumulates cyanidin-3-O-(6 ''-O-malonyl)-glucoside and caffeoylmalic acid. Food Chem. 146, 404-411.
  • Bilger, W., Rolland, M., Nybakken, L., 2007. UV screening in higher plants induced by low temperature in the absence of UV-B radiation. Photochem. Photobiol. Sci. 6 (2), 190.
  • Chen, C., Xia, R., Chen, H., He, Y., 2018. TBtools, a Toolkit for Biologists Integrating Various HTS-Data Handling Tools with a User-Friendly Interface. pp. 289660 bioRxiv.
  • Chen, W., Gong, L., Guo, Z., Wang, W., Zhang, H., Liu, X., Yu, S., Xiong, L., Luo, J., 2013. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics. Mol. Plant 6, 1769-1780.
  • Chung, I.M., Kim, J.J., Lim, J.D., Yu, C.Y., Kim, S.H., Hahn, S.J., 2006. Comparison of resveratrol, SOD activity, phenolic compounds and free amino acids in Rehmannia glutinosa under temperature and water stress. Environ. Exp. Bot. 56, 44-53.
  • Cook, D., Fowler, S., Fiehn, O., Thomashow, M.F., 2004. A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 101, 15243-15248.
  • Foyer, C.H., Noctor, G., 2011. Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 155, 2-18.
  • Goh, H.-H., Khairudin, K., Sukiran, N.A., Normah, M.N., Baharum, S.N., 2016. Metabolite profiling reveals temperature effects on the VOCs and flavonoids of different plant populations. Plant Biotechnol. 18, 130-139.
  • Hu, R., Zhu, X., Xiang, S., Zhan, Y., Zhu, M., Yin, H., 2015. Comparative transcriptome analysis revealed the genotype specific cold response mechanism in tobacco. Biochem Bioph Res Co 469, 535-541.
  • Hu, Z., Fan, J., Xie, Y., Amombo, E., Liu, A., Gitau, M., 2016. Comparative photosynthetic and metabolic analyses reveal mechanism of improved cold stress tolerance in bermudagrass by exogenous melatonin. Plant Physiol. Biochem. (Paris) 100, 94-104 2016.
  • Jiang, M., Zhang, J., 2001. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol. 42 (11), 1265-1273 2001.
  • Jin, J., Zhang, H., Zhang, J., Liu, P., Chen, X., Li, Z., 2017. Integrated transcriptomics and metabolomics analysis to characterize cold stress responses in Nicotiana tabacum. BMC Genom. 18 496-496.
  • Juszczak, I., Cvetkovic, J., Zuther, E., Hincha, D.K., Baier, M., 2016. Natural variation of cold deacclimation correlates with variation of cold-acclimation of the plastid antioxidant system in Arabidopsis thaliana accessions. Front. Plant Sci. 7.
  • Kanehisa, M., Goto, S., 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27-30.
  • Kaplan, F., Kopka, J., Sung, D.Y., Zhao, W., Popp, M., Porat, R., 2007. Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. Plant J. 50, 967-981.
  • Koehler, G., Rohloff, J., Wilson, R.C., Kopka, J., Erban, A., Winge, P., 2015. Integrative "omic" analysis reveals distinctive cold responses in leaves and roots of strawberry, Fragaria × ananassa 'Korona'. Front. Plant Sci. 6, 826.
  • Korn, M., Peterek, S., Mock, H.-P., Heyer, A., K Hincha, D., 2008. Heterosis in the freezing tolerance, and sugar and flavonoid contents of crosses between Arabidopsis thaliana accessions of widely varying freezing tolerance. Plant Cell Environ. 31 (6), 813-827.
  • Liu, Y., Dang, P., Liu, L., He, C., 2019. Cold acclimation by the CBF-COR pathway in a changing climate: lessons from Arabidopsis thaliana. Plant Cell Rep. 38, 511-519.
  • Min Chung, I., Jin Kim, J., Lim, J., Yeon Yu, C., Kim, S., Joon Hahn, S., 2006. Comparison of resveratrol, SOD activity, phenolic compounds and free amino acids in Rehmannia glutinosa under temperature and water stress. Environ. Exp. Bot. 56 (1), 44-53.
  • Mittler, R., 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7 (9), 405-410.
  • Pawlikowska-Pawlega, B., Dziubinska, H., Krol, E., Trebacz, K., Jarosz-Wilkolazka, A., Paduch, R., 2013. Characteristics of quercetin interactions with liposomal and vacuolar membranes. Biochim. Biophys. Acta 1838 (1 Pt B), 254-265.
  • Peng, M., Shahzad, R., Gul, A., Subthain, H., Shen, S., Lei, L., Zheng, Z., Zhou, J., Lu, D., Wang, S., Nishawy, E., Liu, X., Tohge, T., Fernie, A.R., Luo, J., 2017. Differentially evolved glucosyltransferases determine natural variation of rice flavone accumulation and UV-tolerance. Nat. Commun. 8 (1), 1975.
  • Renaut, J., Hausman, J.F., Wisniewski, M., 2006. Proteomics and low-temperature studies: bridging the gap between gene expression and metabolism. Physiol. Plantarum 126 (1), 97-109.
  • Scheibe, R., Dietz, K.-J., 2011. Reduction-Oxidation network for flexible adjustment of cellular metabolism in photoautotrophic cells. Plant Cell Environ. 35 (2), 202-216.
  • Schulz, E., Tohge, T., Zuther, E., Fernie, A.R., Hincha, D.K., 2015. Natural variation in flavonol and anthocyanin metabolism during cold acclimation in Arabidopsis thaliana accessions. Plant Cell Environ. 38, 1658-1672.
  • Schulz, E., Tohge, T., Zuther, E., Fernie, A.R., Hincha, D.K., 2016. Flavonoids are determinants of freezing tolerance and cold acclimation in Arabidopsis thaliana. Sci. Rep. 6, 34027.
  • Shamloo, M., Babawale, E.A., Furtado, A., Henry, R.J., Eck, P.K., Jones, P.J.H., 2017. Effects of genotype and temperature on accumulation of plant secondary metabolites in Canadian and Australian wheat grown under controlled environments. Sci. Rep. 7, 9133.
  • Song, Y., Liu, L., Wei, Y., Li, G., Yue, X., An, L., 2017. Metabolite profiling of adh1 mutant response to cold stress in Arabidopsis. Front. Plant Sci. 7, 2072.
  • Usadel, B., Blaesing, O., Gibon, Y., Poree, F., Hohne, M., Gunter, M., 2008. Multilevel genomic analysis of the response of transcripts, enzyme activities and metabolites in Arabidopsis rosettes to a progressive decrease of temperature in the non-freezing range. Plant Cell Environ. 31 (4), 518-547.
  • Wang, X., Li, W., Li, M., Welti, R., 2006. Profiling lipid changes in plant response to low temperatures.
  • Wu, Z.-G., Jiang, W., Chen, S.-L., Mantri, N., Tao, Z.-M., Jiang, C.-X., 2016. Insights from the cold transcriptome and metabolome of dendrobium officinale: global reprogramming of metabolic and gene regulation networks during cold acclimation. Front. Plant Sci. 7, 1653.
  • Yuan, H., Zeng, X., Yang, Q., Xu, Q., Wang, Y., Jabu, D., 2018. Gene coexpression network analysis combined with metabonomics reveals the resistance responses to powdery mildew in Tibetan hulless barley. Sci. Rep. 8, 14928.
  • Zeng, X., Bai, L., Wei, Z., Yuan, H., Wang, Y., Xu, Q., 2016. Transcriptome analysis revealed the drought-responsive genes in Tibetan hulless barley. BMC Genom. 17, 386.
  • Zeng, X., Long, H., Wang, Z., Zhao, S., Tang, Y., Huang, Z., 2015. The draft genome of Tibetan hulless barley reveals adaptive patterns to the high stressful Tibetan Plateau. Proc. Natl. Acad. Sci. U.S.A. 112, 1095-1100.
  • Zeng, X., Yuan, H., Dong, X., Peng, M., Jing, X., Xu, Q., Tang, T., Wang, Y., Zha, S., Gao, M., Li, C., Shu, C., Wei, Z., Qimei, W., Basang, Y., Dunzhu, J., Li, Z., Bai, L., Shi, J., Zheng, Z., Yu, S., Fernie, A.R., Luo, J., Nyima, T., 2020. Genome-wide dissection of Co-selected UV-B responsive pathways in the UV-B adaptation of qingke. Mol. Plant 13 (1), 112-127.
  • Zhang, Y., Xu, S., Yang, S.J., Chen, Y.Y., 2017. Melatonin alleviates cold-induced oxidative damage by regulation of ascorbate-glutathione and proline metabolism in melon seedlings ( Cucumis melo L.). J. Hortic. Sci. Biotechnol. 92 (3), 313-324.