Published June 30, 2020 | Version v1
Journal article Restricted

Mycosporine-like amino acids, brominated and sulphated phenols: Suitable chemotaxonomic markers for the reassessment of classification of Bostrychia calliptera (Ceramiales, Rhodophyta)

  • 1. ∗ & Institute of Pharmacy, Pharmacognosy, University of Innsbruck, Innrain 80-82, Innsbruck, 6020, Austria

Description

Orfanoudaki, Maria, Hartmann, Anja, Ngoc, Hieu Nguyen, Gelbrich, Thomas, West, John, Karsten, Ulf, Ganzera, Markus (2020): Mycosporine-like amino acids, brominated and sulphated phenols: Suitable chemotaxonomic markers for the reassessment of classification of Bostrychia calliptera (Ceramiales, Rhodophyta). Phytochemistry (112344) 174: 1-8, DOI: 10.1016/j.phytochem.2020.112344, URL: http://dx.doi.org/10.1016/j.phytochem.2020.112344

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:E901FF842F58FFA8FFA8FFC88348D422

References

  • Balata, D., Piazzi, L., Rindi, F., 2011. Testing a new classification of morphological functional groups of marine macroalgae for the detection of responses to stress. Mar Biol 158, 2459-2469. https://doi.org/10.1007/s00227-011-1747-y.
  • Chrapusta, E., Kaminski, A., Duchnik, K., Bober, B., Adamski, M., Bialczyk, J., 2017. Mycosporine-like amino acids: potential health and beauty ingredients. Mar. Drugs 15, 326. https://doi.org/10.3390/md15100326.
  • Chung, H.Y., Ma, W.C.J., Ang, Put O., Kim, J.-S., Chen, F., 2003. Seasonal variations of bromophenols in Brown algae (Padina arborescens, Sargassum siliquastrum, and Lobophora variegata) collected in Hong Kong. J. Agric. Food Chem. 51, 2619-2624. https://doi.org/10.1021/jf026082n.
  • de Oliveira, A.L.L., da Silva, D.B., Turatti, I.C.C., Yokoya, N.S., Debonsi, H.M., 2009. Volatile constituents of Brazilian Bostrychia species (Rhodomelaceae) from mangrove and rocky shore. Biochem. Systemat. Ecol. 37, 761-765. https://doi.org/10.1016/j. bse.2009.11.004.
  • de Oliveira, A.L.L. de, Silva, D.B. da, Lopes, N.P., Debonsi, H.M., Yokoya, N.S., 2012. Chemical constituents from red algae Bostrychia radicans (Rhodomelaceae): new amides and phenolic compounds. Quim. Nova 35, 2186-2188. https://doi.org/10. 1590/S0100-40422012001100016.
  • Felicio, R. de, Debonsi, H.M., Yokoya, N.S., 2008. 4-(hidroximetil)-benzenossulfonato de potassio: metabolito inedito isolado da alga marinha Bostrychia tenella (Rhodomelaceae, Ceramiales). Quimica Nova. 31, 837-839. https://doi.org/10. 1590/S0100-40422008000400025.
  • Flodin, C., Whitfield, F.B., 1999. Biosynthesis of bromophenols in marine algae. Flavours Aquat. Environ. 53-58. https://doi.org/10.1016/S0273-1223(99)00537-5. 1997 40.
  • Guiry, M.D., Guiry, G.M., 2019. AlgaeBase. World-wide electronic publication. National University of Ireland, Galway searched on July 11, 2019. http://www.algaebase.org.
  • Hartmann, A., Ganzera, M., Karsten, U., Skhirtladze, A., Stuppner, H., 2018. Phytochemical and analytical characterization of novel sulfated coumarins in the marine green macroalga Dasycladus vermicularis (scopoli) krasser. Molecules 23. https://doi.org/10.3390/molecules23112735.
  • Hotter, V., Glaser, K., Hartmann, A., Ganzera, M., Karsten, U., 2018. Polyols and UVsunscreens in the Prasiola -clade (Trebouxiophyceae, Chlorophyta) as metabolites for stress response and chemotaxonomy. J. Phycol. 54, 264-274. https://doi.org/10. 1111/jpy.12619.
  • Karsten, U., Koch, S., West, J.A., Kirst, G.O., 1994. The intertidal red alga Bostrychia simpliciuscula Harvey ex J. Agardh from a mangrove swamp in Singapore: acclimation to light and salinity. Aquat. Bot. 48, 313-323. https://doi.org/10.1016/0304- 3770(94)90023-X.
  • Karsten, U., Sawall, T., Wiencke, C., 2006. A survey of the distribution of UV-absorbing substances in tropical macroalgae. Phycol. Res. 46, 271-279.
  • Kicklighter, C.E., Kubanek, J., Hay, M.E., 2004. Do brominated natural products defend marine worms from consumers? Some do, most don't. Limnol. Oceanogr. 49, 430-441. https://doi.org/10.4319/lo.2004.49.2.0430.
  • Kurth, C., Welling, M., Pohnert, G., 2015. Sulfated phenolic acids from Dasycladales siphonous green algae. Phytochemistry 117, 417-423. https://doi.org/10.1016/j. phytochem.2015.07.010.
  • Martins, C.D.L., Ramlov, F., Nocchi Carneiro, N.P., Gestinari, L.M., dos Santos, B.F., Bento, L.M., Lhullier, C., Gouvea, L., Bastos, E., Horta, P.A., Soares, A.R., 2013. Antioxidant properties and total phenolic contents of some tropical seaweeds of the Brazilian coast. J. Appl. Phycol. 25, 1179-1187. https://doi.org/10.1007/s10811- 012-9918-x.
  • McMillan, C., Zapata, O., Escobar, L., 1980. Sulphated phenolic compounds in seagrasses. Aquat. Bot. 8, 267-278. https://doi.org/10.1016/0304-3770(80)90055-8.
  • Murphy, C., Hotchkiss, S., Worthington, J., McKeown, S.R., 2014. The potential of seaweed as a source of drugs for use in cancer chemotherapy. J. Appl. Phycol. 26, 2211-2264. https://doi.org/10.1007/s10811-014-0245-2.
  • Nazifi, E., Wada, N., Yamaba, M., Asano, T., Nishiuchi, T., Matsugo, S., Sakamoto, T., 2013. Glycosylated porphyra-334 and palythine-threonine from the terrestrial cyanobacterium Nostoc commune. Mar. Drugs 11. https://doi.org/10.3390/ md11093124.
  • Orfanoudaki, M., Hartmann, A., Miladinovic, H., Nguyen Ngoc, H., Karsten, U., Ganzera, M., Bostrychines, A.F., 2019. Six novel mycosporine-like amino-acids and a novel betaine from the red alga Bostrychia scorpioides. Mar. Drugs 17, 356. https://doi.org/ 10.3390/md17060356.
  • Phillips, D., Towers, G.H.N., 1981. Bromophenols of Rhodomela larix: chemotaxonomy of morphological forms. Biochem. Systemat. Ecol. 9, 1-3. https://doi.org/10.1016/ 0305-1978(81)90051-X.
  • Rastogi, R.P., Sonani, R.R., Madamwar, D., Incharoensakdi, A., 2016. Characterization and antioxidant functions of mycosporine-like amino acids in the cyanobacterium Nostoc sp. R76DM. Algal Res 16, 110-118. https://doi.org/10.1016/j.algal.2016.03. 009.
  • Sha, C.-K., Ho, W.-Y., 1999. Total synthesis of dimethyl glolosiphone A via α-carbonyl radical spiro-cyclization. J. Chin. Chem. Soc. 46, 469-475. https://doi.org/10.1002/ jccs.199900064.
  • Sheldrick, G.M., 2015. Crystal structure refinement with SHELXL. Acta. Cryst. C71, 3-8. https://doi.org/10.1107/S2053229614024218.
  • Shin, J., Lee, H.-S., Seo, Y., Rho, J.-R., Cho, K.W., Paul, V.J., 2000. New bromotyrosine metabolites from the sponge Aplysinella rhax. Tetrahedron 56, 9071-9077. https:// doi.org/10.1016/S0040-4020(00)00761-4.
  • Steneck, R.S., Dethier, M.N., 1994. A functional group approach to the structure of algaldominated communities. Oikos 69, 476-498. https://doi.org/10.2307/3545860.
  • Wada, N., Sakamoto, T., Matsugo, S., 2015. Mycosporine-like amino acids and their derivatives as natural antioxidants. Antioxidants 4, 603-646. https://doi.org/10.3390/ antiox4030603.
  • Zuccarello, G.C., West, J.A., Karsten, U., King, R.J., 1999. Molecular relationships within Bostrychia tenuissima (Rhodomelaceae, rhodophyta). Phycol. Res. 47, 81-85. https:// doi.org/10.1080/00288330809509959.
  • Zuccarello, G.C., West, J.A., 2002. Phylogeography of the Bostrychia calliptera/B. pinnata complex (Rhodomelaceae, rhodophyta) and divergence rates based on nuclear, mitochondrial and plastid DNA markers. Phycologia 41, 49-60.
  • Zuccarello, G.C., West, J.A., 2006. Molecular phylogeny of the subfamily Bostrychioideae (Ceramiales, Rhodophyta): subsuming Stictosiphonia and highlighting polyphyly in species of Bostrychia. Phycologia 45, 24-36. https://doi.org/10.2216/05-07.1.
  • Zuccarello, G.C., West, J.A., 2011. Insights into evolution and speciation in the red alga Bostrychia: 15 years of research. ALGAE 26, 3-14. https://doi.org/10.4490/algae. 2011.26.1.021.
  • Zuccarello, G.C., West, J.A., Kamiya, M., 2018. Non-monophyly of Bostrychia simpliciuscula (Ceramiales, Rhodophyta): multiple species with very similar morphologies, a revised taxonomy of cryptic species: polyphyletic Bostrychia species. Phycol. Res. 66, 100-107. https://doi.org/10.1111/pre.12207.