Published January 31, 2020 | Version v1
Journal article Restricted

Unveiling fungal detoxification pathways of the cruciferous phytoalexin rapalexin A: Sequential L-cysteine conjugation, acetylation and oxidative cyclization mediated by Colletotrichum spp.

Description

Pedras, M. Soledade C., Thapa, Chintamani (2020): Unveiling fungal detoxification pathways of the cruciferous phytoalexin rapalexin A: Sequential L-cysteine conjugation, acetylation and oxidative cyclization mediated by Colletotrichum spp. Phytochemistry (112188) 169: 1-11, DOI: 10.1016/j.phytochem.2019.112188, URL: http://dx.doi.org/10.1016/j.phytochem.2019.112188

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FF89376D8F5CFFC13B493E4EFFC3946C

References

  • Agerbirk, N., Olsen, C.E., 2012. Glucosinolate structures in evolution. Phytochemistry 77, 16-45.
  • Bhadauria, V., Bett, K., Zhou, T., Vandenberg, A., Wei, Y., Banniza, S., 2013. Identification of Lens culinaris defense genes responsive to the anthracnose pathogen Colletotrichum truncatum. BMC Genet. 14, 31.
  • Calmes, B., Morel-Rouhier, M., Bataille-Simoneau, N., Gelhaye, E., Guillemette, T., Simoneau, P., 2015. Characterization of glutathione transferases involved in the pathogenicity of Alternaria brassicicola. BMC Microbiol. 15, 1-10.
  • Cannon, P.F., Damm, U., Johnston, P.R., Weir, B.S., 2012. Colletotrichum - current status and future directions. Stud. Mycol. 73, 181-213.
  • Cooper, A.J., Haber, M.T., Meister, A., 1982. On the chemistry and biochemistry of 3- mercaptopyruvic acid, the alpha-keto acid analog of cysteine. J. Biol. Chem. 257, 816-826.
  • Damm, U., O' Connell, R.J., Groenewald, J.Z., Crous, P.W., 2014. The Colletotrichum destructivum species complex - hemibiotrophic pathogens of forage and field crops. Studies in Mycology. https://doi.org/10.1016/j.simyco.2014.09.003.
  • Eklind, K.I., Morse, M.A., Chung, F.-L., 1990. Distribution and metabolism of the natural anticarcinogen phenethyl isothiocyanate in A/J mice. Carcinogenesis 11, 2033-2036.
  • Garcia-Pajon, C.M., Hernandez-Galan, R., Collado, I.G., 2003. Biotransformations by Colletotrichum species. Tetrahedron: Asymmetry 14, 1229-1239.
  • Gorler, K., Krumbiegel, G., Mennicke, W.H., Siehl, H.U., 1982. The metabolism of benzyl isothiocyanate and its cysteine conjugate in Guinea-pigs and rabbits. Xenobiotica 12, 535-542.
  • Ioannides, C., Konsue, N., 2015. A principal mechanism for the cancer chemopreventive activity of phenethyl isothiocyanate is modulation of carcinogen metabolism. Drug Metab. Rev. 47, 356-373.
  • Jeschke, V., Gershenzon, J., Vassao, D.G., 2015. Metabolism of glucosinolates and their hydrolysis products in insect herbivores. Recent Adv. Phytochem. 45, 163-194.
  • Lash, L.H., 2007. Methods for measuring cysteine S -conjugate β-lyase activity. Curr.
  • Lee, Y.H., Hong, J.K., 2015. Differential defence responses of susceptible and resistant kimchi cabbage cultivars to anthracnose, black spot and black rot diseases. Plant Pathol. 64, 406-415.
  • Machowicz-Stefaniak, Z., 2011. Occurrence of Colletotrichum dematium on selected herbs species and preparations inhibiting pathogen's growth and development in vitro.
  • Ver Loren Van Themaat, E., Ma, L.J., Vaillancourt, L.J., 2012. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat. Genet. 44, 1060-1065.
  • Pedras, M.S.C., Abdoli, A., 2017a. Pathogen inactivation of cruciferous phytoalexins: detoxification reactions, enzymes and inhibitors. RSC Adv. 7, 23633-23646.
  • Pedras, M.S.C., Abdoli, A., 2017b. Biotransformation of rutabaga phytoalexins by the fungus Alternaria brassicicola: unveiling the first hybrid metabolite derived from a phytoalexin and a fungal polyketide. Bioorg. Med. Chem. 25, 557-567.
  • Pedras, M.S.C., Ahiahonu, P.W.K., 2005. Metabolism and detoxification of phytoalexins and analogs by phytopathogenic fungi. Phytochemistry 66, 391-411.
  • Pedras, M.S.C., Sarma-Mamillapalle, V.K., 2012. The cruciferous phytoalexins rapalexin
  • Pedras, M.S.C., Yaya, E.E., 2012. The first isocyanide of plant origin expands functional group diversity in cruciferous phytoalexins: synthesis, structure and bioactivity of isocyalexin. A. Org. Biomol. Chem., 2012 10, 3613-3616.
  • Pedras, M.S.C., Khan, A.Q., Smith, K.C., Stettner, S.L., 1997. Preparation, biotransformation, and antifungal activity of methyl benzyldithiocarbamates. Can. J. Chem. 75, 825-828.
  • Pedras, M.S.C., Zheng, Q.A., Gadagi, R.S., 2007. The first naturally occurring aromatic isothiocyanates, rapalexins A and B, are cruciferous phytoalexins. Chem. Commun. (J. Chem. Soc. Sect. D) 368-370.
  • Pedras, M.S.C., Yaya, E.E., Glawischnig, E., 2011. The phytoalexins from cultivated and wild crucifers: chemistry and biology. Nat. Prod. Rep. 28, 1381-1405.
  • Razis, A.F.A., Arumugam, A., Konsue, N., 2018. Glucosinolates and isothiocyanates: cancer preventive effects. In: Yahia, E.M. (Ed.), Fruit and Vegetable Phytochemicals: Chemistry and Human Health, second ed. vol. 1. John Wiley & Sons Ltd, New York, pp. 199-210.
  • Sato, T., Muta, T., Imamura, Y., Nojima, H., Moriwaki, J., Yaguchi, Y., 2005. Anthracnose of Japanese radish caused by Colletotrichum dematium. J. Gen. Plant Pathol. 71, 380-383.
  • Traka, M., Mithen, R., 2009. Glucosinolates, isothiocyanates and human health. Phytochem. Rev. 8, 269-282.
  • Wadleigh, R.W., Yu, S.J., 1988. Detoxification of isothiocyanate allelochemicals by glutathione transferase in three Lepidopterous species. J. Chem. Ecol. 14, 1279-1288.
  • Winde, I., Wittstock, U., 2011. Insect herbivore counteradaptations to the plant glucosinolate-myrosinase system. Phytochemistry 72, 1566-1575.
  • Yan, Y., Yuan, Q., Tang, J., Huang, J., Hsiang, T., Wei, Y., Zheng, L., 2018. Colletotrichum higginsianum as a model for understanding host-pathogen interactions: a review. Int. J. Mol. Sci. 19, 1-18.
  • Yavari, I., Seyfi, S., Hossaini, Z., Sabbaghan, M., Shirgahi-Talari, F., 2008. Efficient synthesis of 2-thioxo-1,3-thiazolanes from primary amines, CS2, and ethyl bromopyruvate. Monatshefte Chem. 139, 1479-1482.
  • Zampounis, A., Pigne, S., Dallery, J.-F., Wittenberg, A.H.J., Zhou, S., Schwartz, D.C., Thon, M.R., O'Connell, R.J., 2016. Genome sequence and annotation of Colletotrichum higginsianum, a causal agent of crucifer anthracnose disease. Genome Announc. 4 e00821-16.
  • Zhang, Y., 2004. Cancer-preventive isothiocyanates: measurement of human exposure and mechanism of action. Mutat. Res. 555, 173-190.