Published October 31, 2020 | Version v1
Journal article Restricted

Germacranolides from Elephantopus scaber L. and their cytotoxic activities

  • 1. * & Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, School of Traditional Chinese Materia

Description

Bai, Ming, Chen, Jing-Jie, Xu, Wei, Dong, Shu-Hui, Liu, Qing-Bo, Yao, Guo-Dong, Lin, Bin, Huang, Xiao-Xiao, Song, Shao-Jiang (2020): Germacranolides from Elephantopus scaber L. and their cytotoxic activities. Phytochemistry (112479) 178: 1-8, DOI: 10.1016/j.phytochem.2020.112479, URL: http://dx.doi.org/10.1016/j.phytochem.2020.112479

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FFA2FFB2D24BE423F021FFB0FFC5FFD4

References

  • Adekenov, S.M., 2017. Sesquiterpene lactones with unusual structure. Their biogenesis and biological activity. Fitoterapia 121, 16-30. https://doi.org/10.1016/j. fitote.2017.05.017.
  • Anitha, V.T., Antonisamy, J.M., Jeeva, S., 2012. Anti-bacterial studies on Hemigraphis colorata (Blume) H.G. Hallier and Elephantopus scaber L. Asian Pac. J. Trop. Med. 5, 52-57. https://doi.org/10.1016/S1995-7645(11)60245-9.
  • Bruhn, T., Schaumloffel ¨, A., Hemberger, Y., Bringmann, G., 2013. SpecDis: quantifying the comparison of calculated and experimental electronic circular dichroism spectra. Chirality 25, 243-249. https://doi.org/10.1002/chir.22138.
  • Chan, C.K., Supriady, H., Goh, B.H., Kadir, H.A., 2015. Elephantopus scaber induces apoptosis through ROS-dependent mitochondrial signaling pathway in HCT116 human colorectal carcinoma cells. J. Ethnopharmacol. 168, 291-304. https://doi. org/10.1016/j.jep.2015.03.072.
  • Chan, C.K., Tan, L.T.H., Andy, S.N., Kamarudin, M.N.A., Goh, B.H., Kadir, H.A., 2017. Anti-neuroinflammatory activity of Elephantopus scaber L. via activation of Nrf2/HO- 1 signaling and inhibition of p38 MAPK pathway in LPS-induced microglia BV-2 cells. Front. Pharmacol. 8, 397. https://doi.org/10.3389/fphar.2017.00397.
  • Chen, L., Huang, S., Li, C.Y., Gao, F., Zhou, X.L., 2018. Pyrrolizidine alkaloids from Liparis nervosa with antitumor activity by modulation of autophagy and apoptosis. Phytochemistry 153, 147-155. https://doi.org/10.1016/j.phytochem.2018.06.001.
  • Fraga, B.M., 2013. Natural sesquiterpenoids. Nat. Prod. Rep. 30, 1226-1264. https://doi. org/10.1039/c3np70047j.
  • Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J., 2013. Gaussian 09, Revision D.01. Gaussian, Inc, Wallingford, CT.
  • Goto¯, H., Osawa ¯, E., 2008. An efficient algorithm for searching low-energy conformers of cyclic and acyclic molecules. J. Chem. Soc. Perk. Trans. 2, 187-198. https://doi.org/ 10.1039/p29930000187.
  • Guo, Y., Li, M., Chen, P., Wu, Q., Gao, C., Lu, Y., Zhang, L., Yuan, D., Fu, H., 2017. A pair of new elemanolide sesquiterpene lactones from Elephantopus scaber L. Magn. Reson. Chem. 55, 677-681. https://doi.org/10.1002/mrc.4567.
  • Hiradeve, S.M., Rangari, V.D., 2014a. A review on pharmacology and toxicology of Elephantopus scaber Linn. Nat. Prod. Res. 28, 819-830. https://doi.org/10.1080/ 14786419.2014.883394.
  • Hiradeve, S.M., Rangari, V.D., 2014b. Elephantopus scaber Linn.: a review on its ethnomedical, phytochemical and pharmacological profile. J. Appl. Biomed. 12, 49-61. https://doi.org/10.1016/j.jab.2014.01.008.
  • Isabel, U., Sheldrick, G.M., 2018. An introduction to experimental phasing of macromolecules illustrated by SHELX ; new autotracing features. Acta Crystallogr. D 74, 106-116. https://doi.org/10.1107/S2059798317015121.
  • Lagoutte, R., Serba, C., Abegg, D., Hoch, D.G., Adibekian, A., Winssinger, N., 2016. Divergent synthesis and identification of the cellular targets of deoxyelephantopins. Nat. Commun. 7, 12470-12481. https://doi.org/10.1038/ncomms12470.
  • Mehmood, T., Maryam, A., Ghramh, H.A., Khan, M., Ma, T., 2017. Deoxyelephantopin and isodeoxyelephantopin as potential anticancer agents with effects on multiple signaling pathways. Molecules 22, 1013-1027. https://doi.org/10.3390/ molecules22061013.
  • Pan, L., Hu, L., Zhang, L., Xu, H., Chen, Y., Bian, Q., Zhu, A., Wu, H., 2020. Deoxyelephantopin decreases the release of inflammatory cytokines in macrophage associated with attenuation of aerobic glycolysis via modulation of PKM2. Int. Immunopharm. 79, 106048. https://doi.org/10.1016/j.intimp.2019.106048.
  • Sheldrick, G.M., 2015. Crystal structure refinement with SHELXL. Acta Crystallogr. C 71, 3-8. https://doi.org/10.1107/S2053229614024218.
  • Shulha, O., Zidorn, C., 2019. Sesquiterpene lactones and their precursors as chemosystematic markers in the tribe Cichorieae of the Asteraceae revisited: an update (2008-2017). Phytochemistry 163, 149-177. https://doi.org/10.1016/j. phytochem.2019.02.001.
  • Wang, X.Y., Li, C.J., Ma, J., Li, C., Chen, F.Y., Wang, N., Shen, C.J., Zhang, D.M., 2019. Cytotoxic 9,19-cycloartane type triterpenoid glycosides from the roots of Actaea dahurica. Phytochemistry 160, 48-55. https://doi.org/10.1016/j. phytochem.2019.01.004.