Published February 29, 2020
| Version v1
Journal article
Restricted
Antioxidative potential of ferulic acid phenoxyl radical
Creators
- 1. Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8a, 31000, Osijek, Croatia
Description
Amić, Ana, Marković, Zoran, Dimitrić Marković, Jasmina M., Milenković, Dejan, Stepanić, Višnja (2020): Antioxidative potential of ferulic acid phenoxyl radical. Phytochemistry (112218) 170: 1-8, DOI: 10.1016/j.phytochem.2019.112218, URL: http://dx.doi.org/10.1016/j.phytochem.2019.112218
Files
Linked records
Oops! Something went wrong while fetching results.
Additional details
Identifiers
- LSID
- urn:lsid:plazi.org:pub:FFB27B55FFEEFF8FFF8E9548004CFFCF
References
- Altwicker, E.R., 1967. The chemistry of stable phenoxy radicals. Chem. Rev. 67, 475-531.
- Ami c, A., Lu c i c, B., Stepani c, V., Markovi c, Z., Markovi c, S., Dimitri c -Markovi c, J.M., Ami c, D., 2017. Free radical scavenging potency of quercetin catecholic colonic metabolites: thermodynamics of 2H+/2e - processes. Food Chem. 218, 144-151.
- Ami c, A., Markovi c, Z., Klein, E., Dimitri c Markovi c, J.M., Milenkovi c, D., 2018. Theoretical study of the thermodynamics of the mechanisms underlying antiradical activity of cinnamic acid derivatives. Food Chem. 246, 481-489.
- Ami c, A., Markovi c, Z., Dimitri c Markovi c, J.M., Milenkovi c, D., Lu c i c, B., 2019. The role of guaiacyl moiety in free radical scavenging by 3,5-dihydroxy-4-methoxybenzyl alcohol: thermodynamics of 3H+/3e - mechanisms. Mol. Phys. 117, 207-217.
- Boozer, C.E., Hammond, G.S., Hamilton, C.E., Sen, J.N., 1955. Air oxidation of hydrocarbons. II. The stoichiometry and fate of inhibitors in benzene and chlorobenzene. J. Am. Chem. Soc. 77, 3233-3237.
- Bourne, L.C., Rice-Evans, C., 1998. Bioavailability of ferulic acid. Biochem. Biophys. Res. Commun. 253, 222-227.
- Bowry, V.W., Stocker, R., 1993. Tocopherol-mediated peroxidation. The prooxidant effect of vitamin E on the radical-initiated oxidation of human low-density lipoprotein. J. Am. Chem. Soc. 115, 6029-6044.
- Bunzel, M., Ralph, J., Marita, J.M., Hatfield, R.D., Steinhart, H., 2001. Diferulates as structural components in soluble and insoluble cereal dietary fibre. J. Sci. Food Agric. 81, 653-660.
- Clifford, M.N., 2000. Chlorogenic acids and other cinnamates - nature, occurrence, dietary burden, absorption and metabolism. J. Sci. Food Agric. 80, 1033-1043.
- Dangles, O., 2012. Antioxidant activity of plant phenols: chemical mechanisms and biological significance. Curr. Org. Chem. 16, 692-714.
- Dangles, O., Dufour, C., Tonnele, C., Trouillas, P., 2017. The physical chemistry of polyphenols: insights into the activity of polyphenols in humans at the molecular level. In: Yoshida, K., Cheynier, V., Quideau, S. (Eds.), Recent Advances in Polyphenol Research. Wiley-Blackwell, Hoboken, NJ, pp. 1-35.
- de Almeida, N.E.C., de Aguiar, I., de Zawadzki, A., Cardoso, D.R., 2014. Kinetics and thermodynamics of 1-hydroxyethyl radical reaction with unsaturated lipids and prenylflavonoids. J. Phys. Chem. B 118, 14278-14287.
- Denisov, E.T., Khudyakov, I.V., 1987. Mechanisms of action and reactivities of the free radicals of inhibitors. Chem. Rev. 87, 1313-1357.
- Dizdaroglu, M., Jaruga, P., 2012. Mechanisms of free radical-induced damage to DNA. Free Radic. Res. 46, 382-419.
- Faria, A., Fernandes, I., Norberto, S., Mateus, N., Calhau, C., 2014. Interplay between anthocyanins and gut microbiota. J. Agric. Food Chem. 62, 6898-6902.
- Farinetti, A., Zurlo, V., Manenti, A., Coppi, F., Mattioli, A.V., 2017. Mediterranean diet and colorectal cancer: a systematic review. Nutrition 83, 43-44.
- Finkel, T., Holbrook, N.J., 2000. Oxidants, oxidative stress and the biology of ageing. Nature 408, 239-247.
- Forman, H.J., Augusto, O., Brigelius-Flohe, R., Dennery, P.A., Kalyanaraman, B., Ischiropoulos, H., Mann, G.E., Radi, R., Roberts II, L.J., Vina, J., Davies, K.J.A., 2015. Even free radicals should follow some rules: A Guide to free radical research terminology and methodology. Free Radic. Biol. Med. 78, 233-235.
- Foti, M.C., 2007. Antioxidant properties of phenols. J. Pharm. Pharmacol. 59, 1673-1685.
- Foti, M., Ingold, K.U., Lusztyk, J., 1994. The surprisingly high reactivity of phenoxyl radicals. J. Am. Chem. Soc. 119, 9440-9447.
- Fraga, C.G., Galleano, M., Verstraeten, S.V., Oteiza, P.I., 2010. Basic biochemical mechanisms behind the health benefits of polyphenols. Mol. Asp. Med. 31, 435-445.
- Frisch, M.J., Trucks, G.W., Schlegel, H.B., et al., 2013. Gaussian 09, Revision D.01. Gaussian, Inc., Wallingford, CT.
- Funk, C., Brodelius, P.E., 1990. Phenylpropanoid metabolism in suspension cultures of Vanilla planifolia Andr. Plant Physiol. 94, 95-101.
- Galano, A., Alvarez-Idaboy, J.R., 2019. Computational strategies for predicting free radical scavengers' protection against oxidative stress: where are we and what might follow? Int. J. Quantum Chem. 119, e25665.
- Galano, A., Mazzone, G., Alvarez-Diduk, R., Marino, T., Alvarez-Idaboy, J.R., Russo, N., 2016. Food antioxidants: chemical insights at the molecular level. Ann. Rev. Food Sci. Technol. 7, 335-352.
- Galano, A., Perez-Gonzalez, A., 2012. On the free radical scavenging mechanism of protocatechuic acid, regeneration of the catechol group in aqueous solution. Theor. Chem. Acc. 131, 1265.
- Galano, A., Tan, D.X., Reiter, R.J., 2013. On the free radical scavenging activities of melatonin's metabolites, AFMK and AMK. J. Pineal Res. 54, 245-257.
- Galati, G., O'Brien, P.J., 2004. Potential toxicity of flavonoids and other dietary phenolics: significance for their chemopreventive and anticancer properties. Free Radic. Biol. Med. 37, 287-303.
- Garcia-Conesa, M.T., Plumb, G.W., Waldron, K.W., Ralph, J., Williamson, G., 1997. Ferulic acid dehydrodimers from wheat bran: isolation, purification and antioxidant properties of 8-O-4-diferulic acid. Redox Rep. 3, 319-323.
- Garcia-Conesa, M.T., Wilson, P.D., Plumb, G.W., Ralph, J., Williamson, G., 1999. Antioxidant properties of 4,4'-dihydroxy-3,3'-dimethoxy-β,β'-bicinnamic acid (8-8- diferulic acid, non-cyclic form). J. Sci. Food Agric. 79, 379-384.
- Ghosh, S., Basak, P., Dutta, S., Chowdhury, S., Sil, P.C., 2017. New insights into the ameliorative effects of ferulic acid in pathophysiological conditions. Food Chem. Toxicol. 103, 41-55.
- Glendening, E.D., Badenhoop, J.K., Reed, A.E., Carpenter, J.E., Bohmann, J.A., Morales, C.M., Weinhold, F., 2009. NBO 5.9. Theoretical Chemistry Institute, University of Wisconsin, Madison, WI.
- Gonzalez-Sarrias, A., Espin, J.C., Tomas-Barberan, F.A., 2017. Non-extractable polyphenols produce gut microbiota metabolites that persist in circulation and show antiinflammatory and free radical scavenging effects. Trends Food Sci. Technol. 69, 281-288.
- Graf, E., 1992. Antioxidant potential of ferulic acid. Free Radic. Biol. Med. 13, 435-448.
- Halliwell, B., 2015. Free radicals and other reactive species in disease. In: eLS. John Wiley & Sons, Ltd, Chichester, pp. 1-9.
- Halliwell, B., Rafter, J., Jenner, A., 2005. Health promotion by flavonoids, tocopherols, tocotrienols, and other phenols: direct or indirect effects? Antioxidant or not? Am. J. Clin. Nutr. 81, 268S-276S.
- Hernandez-Garcia, L., Sandoval-Lira, J., Rosete-Luna, S., Nino-Medina, G., Sanchez, M., 2018. Theoretical study of ferulic acid dimer derivatives: bond dissociation enthalpy, spin density, and HOMO-LUMO analysis. Struct. Chem. 29, 1265-1272.
- Jia, Y., He, Y., Lu, F., 2018. The structure-antioxidant activity relationship of dehydrodiferulates. Food Chem. 269, 480-485.
- Karayiannis, D., Kontogianni, M.D., Mendorou, C., Mastrominas, M., Yiannakouris, N., 2018. Adherence to the Mediterranean diet and IVF success rate among non-obese women attempting fertility. Hum. Reprod. 33, 494-502.
- Kozlowski, D., Trouillas, P., Calliste, C., Marsal, P., Lazzaroni, R., Duroux, J.-L., 2007. Density functional theory study of the conformational, electronic, and antioxidant properties of natural chalcones. J. Phys. Chem. A 111, 1138-1145.
- Leopoldini, M., Marino, T., Russo, N., Toscano, M., 2004. Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism. J. Phys. Chem. A 108, 4916-4922.
- Leopoldini, M., Russo, N., Toscano, M., 2011. The molecular basis of working mechanisms of natural polyphenolic antioxidants. Food Chem. 125, 288-306.
- Lucarini, M., Pedrielli, P., Pedulli, G.F., Cabiddu, S., Fattuoni, C., 1996. Bond dissociation energies of O-H bonds in substituted phenols from equilibration studies. J. Org. Chem. 61, 9259-9263.
- Lucarini, M., Pedulli, G.F., 2010. Free radical intermediates in the inhibition of the autoxidation reaction. Chem. Soc. Rev. 39, 2106-2119.
- Mateo Anson, N., van den Berg, R., Havenaar, R., Bast, A., Haenen, G.R.M.M., 2008. Ferulic acid from aleurone determines the antioxidant potency of wheat grain (Triticum aestivum L.). J. Agric. Food Chem. 56, 5589-5594.
- Maurya, D.K., Devasagayam, T.P.A., 2010. Antioxidant and prooxidant nature of hydroxycinnamic acid derivatives ferulic and caffeic acids. Food Chem. Toxicol. 48, 3369-3373.
- Medina, M.E., Galano, A., Alvarez-Idaboy, J.R., 2014. Theoretical study on the peroxyl radicals scavenging activity of esculetin and its regeneration in aqueous solution. Phys. Chem. Chem. Phys. 16, 1197-1207.
- Mendonca, R.D., Carvalho, N.C., Martin-Moreno, J.M., Pimenta, A.M., Lopes, A.C.S., Gea, A., Martinetz-Gonzalez, M.A., Bes-Rastrollo, M., 2019. Total polyphenol intake, polyphenol subtypes and incidence of cardiovascular disease: the SUN cohort study. Nutr. Metab. Cardiovasc. Dis. 29, 69-78.
- Michalik, M., Poliak, P., Luke s, V., Klein, E., 2019. From phenols to quinones: thermodynamics of radical scavenging activity of para-substituted phenols. Phytochemistry 166, 112077.
- Milenkovi c, D., Avdovi c, E.H., Dimi c, D., Bajin, Z., Risti c, B., Vukovi c, N., Trifunovi c, S.R., Markovi c, Z.S., 2018. Reactivity of the coumarine derivative towards cartilage proteins: combined NBO, QTAIM, and molecular docking study. Monatshefte Chem. 149, 159-166.
- Mulder, P., Korth, H.-G., Pratt, D.A., DiLabio, G.A., Valgimigli, L., Pedulli, G.F., Ingold, K.U., 2005. Critical re-evaluation of the O-H bond dissociation enthalpy in phenol. J. Phys. Chem. A 109, 2647-2655.
- Nenadis, N., Sigalas, M.P., 2008. A DFT study on the radical scavenging activity of maritimetin and related aurones. J. Phys. Chem. A 112, 12196-12202.
- Neta, P., Grodkowski, J., 2005. Rate constants for reactions of phenoxyl radicals in solution. J. Phys. Chem. Ref. Data 34, 109-199.
- Parr, R.G., Yang, W., 1984. Density functional approach to the frontier-electron theory of chemical reactivity. J. Am. Chem. Soc. 106, 4049-4050.
- Pedulli, G.F., Lucarini, M., Pedrielli, P., 1997. Bond dissociation energies of phenolic and amine antioxidants. In: Minisci, F. (Ed.), Free Radicals in Biology and Environment. Kluwer Academic Publishers, Dordrecht, pp. 169-179.
- Poquet, L., Clifford, M.N., Williamson, G., 2008. Transport and metabolism of ferulic acid through the colonic epithelium. Drug Metab. Dispos. 36, 190-197.
- Ralph, J., Quideau, S., Grabber, J.H., Hatfield, R.D., 1994. Identification and synthesis of new ferulic acid dehydrodimers present in grass cell walls. J. Chem. Soc. Perkin Trans. 1, 3485-3498.
- Ralph, J., Hatfield, R.D., Grabber, J.H., Jung, H.G., Quideau, S., Helm, R.F., 1998. Cell wall cross-linking in grasses by ferulates and diferulates. In: Lewis, N.G., Sarkanen, S. (Eds.), Lignin and Lignan Biosynthesis, ACS Symposium Series, No. 697. ACS, Washington, DC, pp. 209-236.
- Renger, A., Steinhart, H., 2000. Ferulic acid dehydrodimers as structural elements in cereal dietary fibre. Eur. Food Res. Technol. 211, 422-428.
- Ristow, M., Schmeisser, S., 2011. Extending life span by increasing oxidative stress. Free Radic. Biol. Med. 51, 327-336.
- Rodriguez-Mateos, A., Vauzour, D., Krueger, C.G., Shanmuganayagam, D., Reed, J., Calani, L., Mena, P., Del Rio, D., Crozier, A., 2014. Bioavailability, bioactivity and impact on health of dietary flavonoids and related compounds: an update. Arch. Toxicol. 88, 1803-1853.
- Rose, R.C., Bode, A.M., 1993. Biology of free radical scavengers: an evaluation of ascorbate. FASEB J. 7, 1135-1142.
- Steenken, S., Neta, P., 2003. Transient phenoxyl radicals: formation and properties in aqueous solutions. In: Rappoport, Z. (Ed.), The Chemistry of Phenols. John Wiley & Sons, Hoboken, NJ, pp. 1107-1152.
- Wittman, J.M., Hayoun, R., Kaminsky, W., Coggins, M.K., Mayer, J.M., 2013. A C- C bonded phenoxyl radical dimer with a zero bond dissociation free energy. J. Am. Chem. Soc. 135, 12956-12959.
- Yang, B., Chen, F., Hua, Y., Huang, S.-S., Lin, S., Wen, L., Jiang, Y., 2012. Prooxidant activities of quercetin, p -courmaric acid and their derivatives analysed by quantitative structure-activity relationship. Food Chem. 131, 508-512.
- Zavitsas, A.A., 2003. The relation between bond lengths and dissociation energies of carbon-carbon bonds. J. Phys. Chem. A 107, 897-898.
- Zdunska, K., Dana, A., Kolodziejczak, A., Rotsztejn, H., 2018. Antioxidant properties of ferulic acid and its possible application. Skin Pharmacol. Physiol. 31, 332-336.
- Zhang, H.-Y., Ji, H.-F., 2006. How vitamin E scavenges DPPH radicals in polar protic media. New J. Chem. 30, 503-504.
- Zhao, Z., Moghadasian, M.H., 2008. Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: a review. Food Chem. 109, 691-702.
- Zhao, Y., Truhlar, D.G., 2008. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215-241.
- Zhuang, X.-M., Chen, L., Tan, Y., Yang, H.-Y., Lu, C., Gao, Y., Li, H., 2017. Identification of human cytochrome P450 and UGT enzymes involved in the metabolism of ferulic acid, a major bioactive component in traditional Chinese medicines. Chin. J. Nat. Med. 15, 695-702.