Published April 30, 2021
| Version v1
Journal article
Restricted
Identification of methoxylchalcones produced in response to CuCl treatment and pathogen infection in barley
Creators
- 1. Arid Land Research Center, Tottori University, Tottori, 680-8553, Japan
Description
Ube, Naoki, Katsuyama, Yuhka, Kariya, Keisuke, Tebayashi, Shin-ichi, Sue, Masayuki, Tohnooka, Takuji, Ueno, Kotomi, Taketa, Shin, Ishihara, Atsushi (2021): Identification of methoxylchalcones produced in response to CuCl treatment and pathogen infection in barley. Phytochemistry (112650) 184: 1-10, DOI: 10.1016/j.phytochem.2020.112650, URL: http://dx.doi.org/10.1016/j.phytochem.2020.112650
Files
Linked records
Oops! Something went wrong while fetching results.
Additional details
Identifiers
- LSID
- urn:lsid:plazi.org:pub:F040F034A05EFFC3DE00FF93A118FFD0
References
- Chamarthi, S.K., Kumar, K., Gunnaiah, R., Kushalappa, A.C., Dion, Y., Choo, T.M., 2014. Identification of fusarium head blight resistance related metabolites specific to doubled-haploid lines in barley. Eur. J. Plant Pathol. 138, 67-78. https://doi.org/ 10.1007/s10658-013-0302-8.
- Christensen, A.B., Gregersen, P.L., Schr¨oder, J., Collinge, D.B., 1998a. A chalcone synthase with an unusual substrate preference is expressed in barley leaves in response to UV light and pathogen attack. Plant Mol. Biol. 37, 849-857. https://doi. org/10.1023/A:1006031822141.
- Christensen, A.B., Gregersen, P.L., Olsen, C.E., Collinge, D.B., 1998b. A flavonoid 7-O - methyltransferase is expressed in barley leaves in response to pathogen attack. Plant Mol. Biol. 36, 219-227. https://doi.org/10.1023/a:1005985609313.
- Chu, H.W., Wu, H.T., Lee, Y.J., 2004. Regioselective hydroxylation of 2-hydroxychalcones by dimethyldioxirane towards polymethoxylated flavonoids. Tetrahedron 60, 2647-2655. https://doi.org/10.1016/j.tet.2004.01.023.
- Detsi, A., Majdalani, M., Kontogiorgis, C.A., Hadjipavlou-Litina, D., Kefalas, P., 2009. Natural and synthetic 2'-hydroxy-chalcones and aurones: synthesis, characterization and evaluation of the antioxidant and soybean lipoxygenase inhibitory activity. Bioorg. Med. Chem. 17, 8073-8085. https://doi.org/10.1016/j.bmc.2009.10.002.
- Dittrich, H., Kutchan, T.M., Zenk, M.H., 1992. The jasmonate precursor, 12-oxo-phytodienoic acid. Induces phytoalexin synthesis in Petroselinum crispum cell cultures. FEBS Lett. 309, 33-36. https://doi.org/10.1016/0014-5793(92)80733-W.
- Farmer, E.E., Alm´eras, E., Krishnamurthy, V., 2003. Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr. Opin. Plant Biol. 6, 372-378. https://doi.org/10.1016/s1369-5266(03)00045-1.
- Feng, S., Saw, C.L., Lee, Y.K., Huang, D., 2007. Fungal-stressed germination of black soybeans leads to generation of oxooctadecadienoic acids in addition to glyceollins. J. Agric. Food Chem. 55, 8589-8595. https://doi.org/10.1021/jf0716735.
- Gao, X., Shim, W.B., G¨obel, C., Kunze, S., Feussner, I., Meeley, R., Balint-Kurti, P., Kolomiets, M., 2007. Disruption of a maize 9-lipoxygenase results in increased resistance to fungal pathogens and reduced levels of contamination with mycotoxin fumonisin. Mol. Plant Microbe Interact. 20, 922-933. https://doi.org/10.1094/ MPMI-20-8-0922.
- Hain, R., Reif, H.J., Krause, E., Langebartels, R., Kindl, H., Vornam, B., Wiese, W., Schmelzer, E., Schreier, P.H., St¨ocker, R.H., Stenzel, K., 1993. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361, 153-156. https://doi.org/10.1038/361153a0.
- Hasegawa, M., Mitsuhara, I., Seo, S., Okada, K., Yamane, H., Iwai, T., Oha-shi, Y., 2014. Analysis on blast fungus-responsive characters of a flavonoid phytoalexin sakuranetin; Accumulation in infected rice leaves, antifungal activity and detoxification by fungus. Molecules 19, 11404-11418. https://doi.org/10.3390/ molecules190811404.
- Horie, K., Inoue, Y., Sakai, M., Yao, Q., Tanimoto, Y., Koga, J., Toshima, H., Hasegawa, M., 2015. Identification of UV-induced diterpenes including a new diterpene phytoalexin, phytocassane F, from rice leaves by complementary GC/MS and LC/MS approaches. J. Agric. Food Chem. 63, 4050-4059. https://doi.org/ 10.1021/acs.jafc.5b00785.
- Huffaker, A., Kaplan, F., Vaughan, M.M., Dafoe, N.J., Ni, X.Z., Rocca, J.R., Alborn, H.T., Teal, P.E.A., Schmelz, E.A., 2011. Novel acidic sesquiterpenoids constitute a dominant class of pathogen-induced phytoalexins in maize. Plant Physiol 156, 2082-2097. https://doi.org/10.1104/pp.111.179457.
- Ibraheem, F., Gaffoor, I., Chopra, S., 2010. Flavonoid phytoalexin-dependent resistance to anthracnose leaf blight requires a functional yellow seed1 in Sorghum bicolor. Genetics 184, 915-926. https://doi.org/10.1534/genetics.109.111831.
- Ishihara, A., Ogura, Y., Tebayashi, S., Iwamura, H., 2002. Jasmonate-induced changes in flavonoid metabolism in barley (Hordeum vulgare) leaves. Biosci. Biotechnol. Biochem. 66, 2176-2182. https://doi.org/10.1271/bbb.66.2176.
- Ishihara, A., Kumeda, R., Hayashi, N., Yagi, Y., Sakaguchi, N., Kokubo, Y., Ube, N., Tebayashi, S., Ueno, K., 2017. Induced accumulation of tyramine, serotonin, and related amines in response to Bipolaris sorokiniana infection in barley. Biosci. Biotechnol. Biochem. 81, 1090-1098. https://doi.org/10.1080/ 09168451.2017.1290520.
- Iwase, Y., Takahashi, M., Takemura, Y., Ju-ichi, M., Ito, C., Furukawa, H., Yano, M., 2001. Isolation and identification of two new flavanones and a chalcone from Citrus kinokuni. Chem. Pharm. Bull. 49, 1356-1358. https://doi.org/10.1248/cpb.49.1356.
- Jabs, T., Dietrich, R.A., Dangl, J.L., 1996. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273, 1853-1856. https:// doi.org/10.1126/science.273.5283.1853.
- Kato, H., Kodama, O., Akatsuka, T., 1994. Oryzalexin F, a diterpene phytoalexin from UV-irradiated rice leaves. Phytochemistry 36, 299-301. https://doi.org/10.1016/ S0031-9422(00)97064-X.
- Kodama, O., Miyakawa, J., Akatsuka, Y., Kiyosawa, S., 1992. Sakuranetin, a flavanone phytoalexin from ultraviolet-irradiated rice leaves. Phytochemistry 31, 3807-3809. https://doi.org/10.1016/S0031-9422(00)97532-0.
- Kramell, R., Miersch, O., Atzorn, R., Parthier, B., Wasternack, C., 2000. Octadecanoidderived alteration of gene expression and the "oxylipin signature" in stressed barley leaves. Implications for different signaling pathways. Plant Physiol 123, 177-188. https://doi.org/10.1104/pp.123.1.177.
- Kumaraswamy, G.K., Bollina, V., Kushalappa, A.C., Choo, T.M., Dion, Y., Rioux, S., Mamer, O., Faubert, D., 2011. Metabolomics technology to phenotype resistance in barley against Gibberella zeae. Eur. J. Plant Pathol. 130, 29-43. https://doi.org/ 10.1007/s10658-010-9729-3.
- Li, S., Lo, C.Y., Ho, C.T., 2006. Hydroxylated polymethoxyflavones and methylated flavonoids in sweet orange (Citrus sinensis) peel. J. Agric. Food Chem. 54, 4176-4185. https://doi.org/10.1021/jf060234n.
- Li, Y.L., Li, J., Wang, N.L., Yao, X.S., 2008. Flavonoids and a new polyacetylene from Bidens parviflora Willd. Molecules 13, 1931-1941. https://doi.org/10.3390/ molecules13081931.
- Mauch, F., Dudler, R., 1993. Differential induction of distinct glutathione-S-transferases of wheat by xenobiotics and by pathogen attack. Plant Physiol 102, 1193-1201. https://doi.org/10.1104/pp.102.4.1193.
- Morimoto, N., Ueno, K., Teraishi, M., Okumoto, Y., Mori, N., Ishihara, A., 2018. Induced phenylamide accumulation in response to pathogen infection and hormone treatment in rice (Oryza sativa). Biosci. Biotechnol. Biochem. 82, 407-416. https:// doi.org/10.1080/09168451.2018.1429889.
- Murata, K., Kitano, T., Yoshimoto, R., Takata, R., Ube, N., Ueno, K., Ueno, M., Yabuta, Y., Teraishi, M., Holland, C.K., Jander, G., Okumoto, Y., Mori, N., Ishihara, A., 2020. Natural variation in the expression and catalytic activity of a naringenin 7-O - methyltransferase influences antifungal defenses in diverse rice cultivars. Plant J. 101, 1103-1117. https://doi.org/10.1111/tpj.14577.
- Nicholson, R.L., Kollipara, S.S., Vincent, J.R., Lyons, P.C., Cadena-Gomez, G., 1987. Phytoalexin synthesis by the sorghum mesocotyl in response to infection by pathogenic and nonpathogenic fungi. Proc. Natl. Acad. Sci. U.S.A. 84, 5520-5524. https://doi.org/10.1073/pnas.84.16.5520.
- Nishiguchi, S., Murata, K., Ube, N., Ueno, K., Tebayashi, S., Teraishi, M., Okumoto, Y., Mori, N., Ishihara, A., 2018. Accumulation of 9- and 13-KODEs in response to jasmonic acid treatment and pathogenic infection in rice. J. Pestic. Sci. 43, 191-197. https://doi.org/10.1584/jpestics.D18-022.
- Nojiri, H., Sugimori, M., Yamane, H., Nishimura, Y., Yamada, A., Shibuya, N., Kodama, O., Murofushi, N., Omori, T., 1996. Involvement of jasmonic acid in elicitor-induced phytoalexin production in suspension-cultured rice cells. Plant Physiol 110, 387-392. https://doi.org/10.1104/pp.110.2.387.
- Nonaka, H., Ogawa, N., Maeda, N., Wang, Y.G., Kobayashi, Y., 2010. Stereoselective synthesis of epi-jasmonic acid, tuberonic acid, and 12-oxo-PDA. Org. Biomol. Chem. 8, 5212-5223. https://doi.org/10.1039/C0OB00218F.
- Ogawa, S., Miyamoto, K., Nemoto, K., Sawasaki, T., Yamane, H., Nojiri, H., Okada, K., 2017. OsMYC2, an essential factor for JA-inductive sakuranetin production in rice, interacts with MYC2-like proteins that enhance its transactivation ability. Sci. Rep. 7, 40175. https://doi.org/10.1038/srep40175.
- Oikawa, A., Ishihara, A., Hasegawa, M., Kodama, O., Iwamura, H., 2001. Induced accumulation of 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside (HDMBOA-Glc) in maize leaves. Phytochemistry 56, 669-675. https://doi.org/ 10.1016/s0031-9422(00)00494-5.
- Park, H.L., Lee, S.W., Jung, K.H., Hahn, T.R., Cho, M.H., 2013. Transcriptomic analysis of UV-treated rice leaves reveals UV-induced phytoalexin biosynthetic pathways and their regulatory networks in rice. Phytochemistry 96, 57-71. https://doi.org/ 10.1016/j.phytochem.2013.08.012.
- Himmelbach, A., Gottwald, S., Nair, S.K., Tagiri, A., Yukuhiro, F., Nagamura, Y., Kanamori, H., Matsumoto, T., Willcox, G., Middleton, C.P., Wicker, T., Walther, A., Waugh, R., Fincher, G.B., Stein, N., Kumlehn, J., Sato, K., Komatsuda, T., Komatsuda, T., 2015. Evolution of the grain dispersal system in barley. Cell 162, 527-539. https://doi.org/10.1016/j.cell.2015.07.002.
- Rakwal, R., Tamogami, S., Kodama, O., 1996. Role of jasmonic acid as a signaling molecule in copper chloride-elicited rice phytoalexin production. Biosci. Biotechnol. Biochem. 60, 1046-1048. https://doi.org/10.1271/bbb.60.1046.
- Reuber, S., Bornman, J.F., Weissenb¨ock, G., 1996. A flavonoid mutant of barley (Hordeum vulgare L.) exhibits increased sensitivity to UV-B radiation in the primary leaf. Plant Cell Environ. 19, 593-601. https://doi.org/10.1111/j.1365-3040.1996. tb00393.x.
- Schmelz, E.A., Kaplan, F., Huffaker, A., Dafoe, N.J., Vaughan, M.M., Ni, X.Z., Rocca, J.R., Alborn, H.T., Teal, P.E., 2011. Identity, regulation, and activity of inducible diterpenoid phytoalexins in maize. Proc. Natl. Acad. Sci. U.S.A. 108, 5455-5460. https://doi.org/10.1073/pnas.1014714108.
- Snyder, B.A., Nicholson, R.L., 1990. Synthesis of phytoalexins in sorghum as a site specific response to fungal ingress. Science 248, 1637-1639. https://doi.org/ 10.1126/science.248.4963.1637.
- Tanaka, T., Iinuma, M., Yuki, K., Fujii, Y., Mizuno, M., 1992. Flavonoids in root bark of Pongamia pinnata. Phytochemistry 31, 993-998. https://doi.org/10.1016/0031- 9422(92)80055-J.
- Thomma, B.P.H.J., Nelissen, I., Eggermont, K., Broekaert, W.F., 1999. Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alternaria brassicicola. Plant J. 19, 163-171. https://doi.org/10.1046/j.1365- 313X.1999.00513.x.
- Ube, N., Harada, D., Katsuyama, Y., Osaki-Oka, K., Tonooka, T., Ueno, K., Taketa, S., Ishihara, A., 2019a. Identification of phenylamide phytoalexins and characterization of inducible phenylamide metabolism in wheat. Phytochemistry 167, 112098. https://doi.org/10.1016/j.phytochem.2019.112098.
- Ube, N., Yabuta, Y., Tohnooka, T., Ueno, K., Taketa, S., Ishihara, A., 2019b. Biosynthesis of phenylamide phytoalexins in pathogen-infected barley. Int. J. Mol. Sci. 20, 5541. https://doi.org/10.3390/ijms20225541.
- Vollenweider, S., Weber, H., Stolz, S., Ch´etelat, A., Farmer, E.E., 2000. Fatty acid ketodienes and fatty acid ketotrienes: michael addition acceptors that accumulate in wounded and diseased Arabidopsis leaves. Plant J. 24, 467-476. https://doi.org/ 10.1111/j.1365-313X.2000.00897.x.
- von Bothmer, R., Jacobsen, N., Baden, C., Jorgensen, R.B., Linde-Laursen, I., 1995. An ecogeographical study of the genus Hordeum. In: Systematic and Ecogeographical Studies on Crop Genepools 7, second ed. International Plant Genetic Resources Institute, Rome.
- Wakuta, S., Suzuki, E., Saburi, W., Matsuura, H., Nabeta, K., Imai, R., Matsui, H., 2011. OsJAR1 and OsJAR2 are jasmonyl-L-isoleucine synthases involved in wound- and pathogen-induced jasmonic acid signalling. Biochem. Biophys. Res. Commun. 409, 634-639. https://doi.org/10.1016/j.bbrc.2011.05.055.
- Wasternack, C., Hause, B., 2013. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. Ann. Bot. 111, 1021-1058. https://doi.org/10.1093/aob/mct067.
- Winkel-Shirley, B., 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol 126, 485-493. https:// doi.org/10.1104/pp.126.2.485.
- Yamane, H., 2013. Biosynthesis of phytoalexins and regulatory mechanisms of it in rice. Biosci. Biotechnol. Biochem. 77, 1141-1148. https://doi.org/10.1271/bbb.130109.
- Zhou, J.M., Fukushi, Y., Wollenweber, E., Ibrahim, R.K., 2008. Characterization of two dd -methyltransferase-like genes in barley and maize. Pharm. Biol. 46, 26-34. https://doi.org/10.1080/13880200701729745.