Published August 21, 2023 | Version v1.0.1
Software Open

Pretrained model for 3D semantic image segmentation of the liver from CT scans

Description

These weights are for an nnUnet v1 model trained on TotalSegmentator and FLARE21 datasets to segment the liver from CT scans.

Notes

v1.0.0: original upload v1.0.1: removed unnecessary files, keeping only model weights

Files

Task773_Liver.zip

Files (1.2 GB)

Name Size Download all
md5:0ff1c3aeb152bf9d416c33fe1cb67a14
1.2 GB Preview Download

Additional details

References

  • Isensee, F., Jaeger, P. F., Kohl, S. A., Petersen, J., & Maier-Hein, K. H. (2021). nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature methods, 18(2), 203-211.
  • Jakob Wasserthal. (2022). Dataset with segmentations of 104 important anatomical structures in 1204 CT images (1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.6802614
  • Ma, Jun. (2021). MICCAI 2021 FLARE Challenge Dataset [Data set]. In IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2021.3100536