Published August 21, 2023
| Version v1.0.1
Software
Open
Pretrained model for 3D semantic image segmentation of the liver from CT scans
Description
These weights are for an nnUnet v1 model trained on TotalSegmentator and FLARE21 datasets to segment the liver from CT scans.
Notes
Files
Task773_Liver.zip
Files
(1.2 GB)
Name | Size | Download all |
---|---|---|
md5:0ff1c3aeb152bf9d416c33fe1cb67a14
|
1.2 GB | Preview Download |
Additional details
Software
- Repository URL
- https://github.com/bamf-health/aimi-liver-ct
References
- Isensee, F., Jaeger, P. F., Kohl, S. A., Petersen, J., & Maier-Hein, K. H. (2021). nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nature methods, 18(2), 203-211.
- Jakob Wasserthal. (2022). Dataset with segmentations of 104 important anatomical structures in 1204 CT images (1.0) [Data set]. Zenodo. https://doi.org/10.5281/zenodo.6802614
- Ma, Jun. (2021). MICCAI 2021 FLARE Challenge Dataset [Data set]. In IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2021.3100536