Published March 21, 2023 | Version v2
Journal article Open

Large-Scale Annotation Dataset for Fetal Head Biometry in Ultrasound Images

Description

Dataset Overview

Title: Large-Scale Annotation Dataset for Fetal Head Biometry in Ultrasound Images

License: Creative Commons Attribution 4.0 International (CC BY 4.0)

Total Images: 3,832

Image Dimensions: 959 x 661 pixels

Description: This dataset provides a comprehensive collection of ultrasound images focusing on fetal head biometry. It is designed to support the development and evaluation of image segmentation and biometric analysis algorithms in prenatal diagnostics. The images have been carefully annotated by experts in the field, ensuring high-quality data for researchers.

For additional details, including data structure, annotation guidelines, and access instructions, please refer to the readme.txt file included in the dataset package.

Citation Instructions: If you utilize this dataset in your research, please acknowledge the work of the contributors by citing the following papers:

  • Dataset Paper:
    Mahmood Alzubaidi, Marco Agus, Michel Makhlouf, Fatima Anver, Khalid Alyafei, Mowafa Househ, "Large-Scale Annotation Dataset for Fetal Head Biometry in Ultrasound Images," Data in Brief, 2023, 109708, ISSN 2352-3409.
    DOI: https://doi.org/10.1016/j.dib.2023.109708

  • Baseline Paper:
    M. Alzubaidi, U. Shah, M. Agus, and M. Househ, "FetSAM: Advanced Segmentation Techniques for Fetal Head Biometrics in Ultrasound Imagery," IEEE Open Journal of Engineering in Medicine and Biology.
    DOI: https://ieeexplore.ieee.org/document/10480532

  • Review Paper:                                                                                                                                                                                                                                                       Alzubaidi, M., Agus, M., Alyafei, K., Althelaya, K.A., Shah, U., Abd-Alrazaq, A., Anbar, M., Makhlouf, M. and Househ, M., 2022. Toward deep observation: A systematic       survey on artificial intelligence techniques to monitor fetus via ultrasound images. Iscience.                                                                                                                                        DOI:  https://doi.org/10.48550/arXiv.2201.07935                                                                                                                                                                                                                                          
  • How Pixel is Converted Into Millimeter:                                                                                                                                                                                                     Alzubaidi, M., Shah, U., Shah, H. and Househ, M., 2023, August. Conversion of Pixel to Millimeter in Ultrasound Images: A Methodological Approach and Dataset. In 2023 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB) (pp. 1-6). IEEE.                                                                                DOI: https://ieeexplore.ieee.org/document/10264909

Keywords: Ultrasonic imaging, Image segmentation, Head, Brain modeling, Biological system modeling, Imaging, Ultrasonic variables measurement, Fetal Ultrasound Imaging, Image Segmentation, Prompt-based Learning, Prenatal Diagnostics, Ultrasound Biometrics.

Files

Diverse Fetal Head Images-orginal-image.zip

Files (2.4 GB)

Name Size Download all
md5:52f24da73f61cab9f3b1cfafa6c69cf2
129.8 MB Preview Download
md5:235b2eea5539d4042a9eff36699054fd
313.0 MB Preview Download
md5:f8cd5bf871b7672c42bef1ea5518fec7
3.9 kB Preview Download
md5:3f1f14fa5b5d874b486a4f419aa6c079
225.4 MB Preview Download
md5:f7332caae63746bea7eaa368740a23af
274.0 MB Preview Download
md5:11c0fe9b3439de3ab9f7a941a3b38561
478.7 MB Preview Download
md5:769b750aff291e837791749f87a8a16f
596.5 MB Preview Download
md5:674b4cf847770ca6a7ac8ce8020536b4
185.4 MB Preview Download
md5:bfae5f04ffde1c49c529b4385d35c597
232.1 MB Preview Download

Additional details

References

  • @article{ALZUBAIDI2023109708, title = {Large-Scale Annotation Dataset for Fetal Head Biometry in Ultrasound Images}, journal = {Data in Brief}, pages = {109708}, year = {2023}, issn = {2352-3409}, doi = {https://doi.org/10.1016/j.dib.2023.109708}, url = {https://www.sciencedirect.com/science/article/pii/S2352340923007837}, author = {Mahmood Alzubaidi and Marco Agus and Michel Makhlouf and Fatima Anver and Khalid Alyafei and Mowafa Househ}, keywords = {Fetal ultrasound imaging, Computer vision, Data annotation, Medical imaging}, abstract = {This dataset features a collection of 3,832 high-resolution ultrasound images, each with dimensions of 959×661 pixels, focused on Fetal heads. The images highlight specific anatomical regions: the brain, cavum septum pellucidum (CSP), and lateral ventricles (LV). The dataset was assembled under the Creative Commons Attribution 4.0 International license, using previously anonymized and de-identified images to maintain ethical standards. Each image is complemented by a CSV file detailing pixel size in millimeters (mm). For enhanced compatibility and usability, the dataset is available in 11 universally accepted formats, including Cityscapes, YOLO, CVAT, Datumaro, COCO, TFRecord, PASCAL, LabelMe, Segmentation mask, OpenImage, and ICDAR. This broad range of formats ensures adaptability for various computer vision tasks, such as classification, segmentation, and object detection. It is also compatible with multiple medical imaging software and deep learning frameworks. The reliability of the annotations is verified through a two-step validation process involving a Senior Attending Physician and a Radiologic Technologist. The Intraclass Correlation Coefficients (ICC) and Jaccard similarity indices (JS) are utilized to quantify inter-rater agreement. The dataset exhibits high annotation reliability, with ICC values averaging at 0.859 and 0.889, and JS values at 0.855 and 0.857 in two iterative rounds of annotation. This dataset is designed to be an invaluable resource for ongoing and future research projects in medical imaging and computer vision. It is particularly suited for applications in prenatal diagnostics, clinical diagnosis, and computer-assisted interventions. Its detailed annotations, broad compatibility, and ethical compliance make it a highly reusable and adaptable tool for the development of algorithms aimed at improving maternal and Fetal health.} }
  • @ARTICLE{10480532, author={Alzubaidi, Mahmood and Shah, Uzair and Agus, Marco and Househ, Mowafa}, journal={IEEE Open Journal of Engineering in Medicine and Biology}, title={FetSAM: Advanced Segmentation Techniques for Fetal Head Biometrics in Ultrasound Imagery}, year={2024}, volume={}, number={}, pages={1-16}, keywords={Ultrasonic imaging;Image segmentation;Head;Brain modeling;Biological system modeling;Imaging;Ultrasonic variables measurement;Fetal Ultrasound Imaging;Image Segmentation;Prompt-based Learning;Prenatal Diagnostics;Ultrasound Biometrics}, doi={10.1109/OJEMB.2024.3382487}}