Published September 30, 2021 | Version v1
Journal article Restricted

Long-chain alkenes and alkadienes of eight lichen species collected in Japan

  • 1. Department of Natural History Sciences, Graduate School of Science, Hokkaido University, N10W8, Kita-ku, Sapporo, 060-0810, Japan

Description

Ikeda, Masashi A., Nakamura, Hideto, Sawada, Ken (2021): Long-chain alkenes and alkadienes of eight lichen species collected in Japan. Phytochemistry (112823) 189: 1-8, DOI: 10.1016/j.phytochem.2021.112823, URL: http://dx.doi.org/10.1016/j.phytochem.2021.112823

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:7713FF872000FFEFFFC3FFF7D512FFB8

References

  • Atanassova, I., Doerr, S., 2014. Experimental approaches for analysis of organic compounds in water soluble fractions from hydrophobic soils. Silva Balcanica 15, 43-49.
  • Beck, A., Friedl, T., Rambold, G., 1998. Selectivity of photobiont choice in a defined lichen community: inferences from cultural and molecular studies. New Phytol. 139, 709-720. https://doi.org/10.1046/j.1469-8137.1998.00231.x.
  • Cardoso, J.N., Gaskell, S.J., Quirk, M.M., Eglinton, G., 1983. Hydrocarbon and fatty acid distributions in Rostherne lake sediment (England). Chem. Geol. 38, 107-128. https://doi.org/10.1016/0009-2541(83)90048-7.
  • Carlson, D.A., Roan, C., Yost, R.A., Hector, J., 1989. Dimethyl disulfide derivatives of long chain alkenes, alkadienes, and alkatrienes for gas chromatography/mass spectrometry. Anal. Chem. 61, 1564-1571. https://doi.org/10.1021/ac00189a019.
  • Catalano, S., Marsili, A., Morelli, T., Pacchiani, M., 1976. Hydrocarbons, sterols and fatty acids of Lobaria pulmonaria. Phytochemistry 15, 221. https://doi.org/10.1016/ S0031-9422(00)89091-3.
  • Chahra, D., Ramdani, M., Lograda, T., Chalard, P., Figueredo, G., 2016. Chemical composition and antimicrobial activity of Evernia prunastri and Ramalina farinacea from Algeria. IBSPR 4, 35-42.
  • Coates, R.C., Podell, S., Korobeynikov, A., Lapidus, A., Pevzner, P., Sherman, D.H., Allen, E.E., Gerwick, L., Gerwick, W.H., 2014. Characterization of cyanobacterial hydrocarbon composition and distribution of biosynthetic pathways. PloS One 9. https://doi.org/10.1371/journal.pone.0085140.
  • Corbier, B., Teisseire, P., 1974. Contribution to the knowledge of absolute oakmoss oil. Recherche 19, 291-294.
  • Cornejo, C., Scheidegger, C., 2015. Multi-gene phylogeny of the genus Lobaria: evidence of species-pair and allopatric cryptic speciation in East Asia. Am. J. Bot. 102, 2058-2073. https://doi.org/10.3732/ajb.1500207.
  • Cranwell, P.A., Eglinton, G., Robinson, N., 1987. Lipids of aquatic organisms as potential contributors to lacustrine sediments-II. Org. Geochem. 11, 513-527. https://doi.org/ 10.1016/0146-6380(87)90007-6.
  • Dal Grande, F., Beck, A., Cornejo, C., Singh, G., Cheenacharoen, S., Nelsen, M.P., Scheidegger, C., 2014. Molecular phylogeny and symbiotic selectivity of the green algal genus Dictyochloropsis s.l. (Trebouxiophyceae): a polyphyletic and widespread group forming photobiont-mediated guilds in the lichen family Lobariaceae. New Phytol. 202, 455-470. https://doi.org/10.1111/nph.12678.
  • Dembitsky, V.M., 1992. Lipids of lichens. Prog. Lipid Res. 31, 373-397. https://doi.org/ 10.1016/0163-7827(92)90002-Z.
  • Ficken, K.J., Barber, K.E., Eglinton, G., 1998. Lipid biomarker, δ13C and plant macrofossil stratigraphy of a Scottish montane peat bog over the last two millennia. Org.
  • Francis, G.W., Veland, K., 1981. Alkylthiolation for the determination of double-bond positions in linear alkenes. J. Chromatogr. A 219, 379-384. https://doi.org/ 10.1016/S0021-9673(00)80381-7.
  • Gaskell, S.J., Eglinton, G., Bruun, T., 1973. Hydrocarbon constituents of three species of Norwegian lichen: Cetraria nivalis, C. Crispa, Siphula ceratites. Phytochemistry 12, 1174-1176. https://doi.org/10.1016/0031-9422(73)85039-3.
  • Gavin, J., Nicollier, G., Tabacchi, R., 1978. Volatile components of "oak moss" (Evernia prunastri (L.) ACH.) 3rd communication. Helv. Chim. Acta 61, 352-357. https://doi. org/10.1002/hlca.19780610131.
  • Goss, R., Wilhelm, C., 2009. Lipids in algae, lichens and mosses. In: Wada, H., Murata, N. (Eds.), Lipids in Photosynthesis: Advances in Photosynthesis and Respiration.
  • Springer, Dordrecht, p. 128. https://doi.org/10.1007/978-90-481-2863-1_6.
  • Guvenc, A., Kupeli Akkol, E., Suntar, I., Keles, H., Yildiz, S., Calis, I., 2012. Biological activities of Pseudevernia furfuracea (L.) Zopf extracts and isolation of the active compounds. J. Ethnopharmacol. 144, 726-734. https://doi.org/10.1016/j.
  • Honegger, R., 2009. Lichen-forming fungi and their photobionts. In: Deising, H.B. (Ed.), The Mycota, Plant Relationships, vol. 5. Springer, Berlin/Heidelberg, pp. 307-333. https://doi.org/10.1007/978-3-540-87407-2_16.
  • Huang, X., Xue, J., Guo, S., 2012. Long chain n -alkanes and their carbon isotopes in lichen species from western Hubei Province: implication for geological records.
  • Huneck, S., 1999. The significance of lichens and their metabolites. Naturwissenschaften 86, 559-570. https://doi.org/10.1007/s001140050676.
  • Huneck, S., Yoshimura, I., 1996. Identification of Lichen Substances. Springer, Berlin/ Heidelberg. https://doi.org/10.1007/978-3-642-85243-5_2.
  • Ikeda, M.A., Nakamura, H., Sawada, K., 2018. Aliphatic hydrocarbons identified in lichen genus Cladonia and Xanthoria : potential for their chemotaxonomic and environmental indicators. Res. Org. Geochem. 34, 15-28. https://doi.org/10.20612/ rog.34.2_15 (In Japanese with English abstract).
  • Kahriman, N., Yazici, K., Arslan, T., Aslan, A., Karaoglu, S.A., Yayli, N., 2011. Chemical composition and antimicrobial activity of the essential oils from Evernia prunastri (L.) Ach. and Evernia divaricata (L.) Ach. Asian J. Chem. 23, 1937-1939. https://doi.org/ 10.15739/ibspr.16.005.
  • Kaiser, J., On ¨, B., Arz, H.W., Akcer-On¨, S., 2016. Sedimentary lipid biomarkers in the magnesium rich and highly alkaline Lake Salda (south-western Anatolia). J. Limnol. 75, 581-596. https://doi.org/10.4081/jlimnol.2016.1337.
  • Ladygina, N., Dedyukhina, E.G., Vainshtein, M.B., 2006. A review on microbial synthesis of hydrocarbons. Process Biochem. 41, 1001-1014. https://doi.org/10.1016/j.
  • Larson, D.W., 1987. The absorption and release of water by lichens. In: Peveling, E. (Ed.), Progress and Problems in Lichenology in the Eighties. Bibliotheca Lichenologica 25. J. Cramer, Berlin, pp. 351-360.
  • Le Pogam, P., Boustie, J., 2016. Xanthones of lichen source: a 2016 update. Molecules 21. https://doi.org/10.3390/molecules21030294.
  • Matsumoto, G.I., Akiyama, M., Watanuki, K., Torii, T., 1990. Unusual distributions of long-chain n -alkanes and n -alkenes in Antarctic soil. Org. Geochem. 15, 403-412. https://doi.org/10.1016/0146-6380(90)90167-X.
  • Matsumoto, G.I., Friedmann, E.I., Watanuki, K., Ocampo-Friedmann, R., 1992. Novel long-chain anteiso -alkanes and anteiso -alkanoic acids in Antarctic rocks colonized by living and fossil cryptoendolithic microorganisms. J. Chromatogr. A 598, 267-276. https://doi.org/10.1016/0021-9673(92)85056-y.
  • Moya, P., ˇSkaloud, P., Chiva, S., Garcia-Breijo, F.J., Reig-Arminana t, J., Vanˇcurov´a, L., Barreno, E., 2015. Molecular phylogeny and ultrastructure of the lichen microalga Asterochloris mediterranea sp. nov. from Mediterranean and Canary Islands ecosystems. Int. J. Syst. Evol. Microbiol. 65, 1838-1854. https://doi.org/10.1099/ ijs.0.000185.
  • Myllys, L., Stenroos, S., Thell, A., Kuusinen, M., 2007. High cyanobiont selectivity of epiphytic lichens in old growth boreal forest of Finland. New Phytol. 173, 621-629.
  • Nakamura, H., Sawada, K., Araie, H., Suzuki, I., Shiraiwa, Y., 2015. n -Nonacosadienes from the marine haptophytes Emiliania huxleyi and Gephyrocapsa oceanica.
  • Nyati, S., Scherrer, S., Werth, S., Honegger, R., 2014. Green-algal photobiont diversity (Trebouxia spp.) in representatives of Teloschistaceae (Lecanoromycetes, lichen-forming ascomycetes). Lichenol. 46, 189-212. https://doi.org/10.1017/ S0024282913000819.
  • O' Brien, H.E., Miadlikowska, J., Lutzoni, F., 2005. Assessing host specialization in symbiotic cyanobacteria associated with four closely related species of the lichen fungus Peltigera. Eur. J. Phycol. 40, 363-378. https://doi.org/10.1080/ 09670260500342647.
  • Olivier-Jimenez, D., Chollet-Krugler, M., Rondeau, D., Beniddir, M.A., Ferron, S., Delhaye, T., Allard, P., Wolfender, J., Sipman, H.J.M., Lucking, R., Boustie, J., Le Pogam, P., 2019. A database of high-resolution MS/MS spectra for lichen metabolites. Sci. Data 6, 294. https://doi.org/10.1038/s41597-019-0305-1.
  • Ot´alora, M.A.G., Martinez, I., O' Brien, H., Molina, M.C., Arag´on, G., Lutzoni, F., 2010. Multiple origins of high reciprocal symbiotic specificity at an intercontinental spatial scale among gelatinous lichens (Collemataceae, Lecanoromycetes). Mol. Phylogenet. Evol. 56, 1089-1095. https://doi.org/10.1016/j.ympev.2010.05.013.
  • Piervittori, R., Usai, L., Alessio, F., Maffei, M., 1996. Surface n -alkane variability in Xanthoria parietina. Lichenol. 28, 79-87. https://doi.org/10.1006/lich.1996.0007.
  • Rafat, A., Ridgway, H.J., Cruickshank, R.H., Buckley, H.L., 2015. Isolation and coculturing of symbionts in the genus Usnea. Symbiosis 66, 123-132. https://doi.org/ 10.1007/s13199-015-0343-1.
  • Rieley, G., Teece, M., Peakman, T., Raven, A., Greene, K., Clarke, T., Murray, M., Leftley, J., Campbell, C., Harris, R., Parkes, R., Maxwell, J., 1998. Long-chain alkenes of the haptophytes Isochrysis galbana and Emiliania huxleyi. Lipids 33, 617-625. https://doi.org/10.1007/s11745-998-0248-0.
  • Rikkinen, J., Oksanen, I., Lohtander, K., 2002. Lichen guilds share related cyanobacterial symbionts. Science 297, 357. https://doi.org/10.1126/science.1072961.
  • Sawada, K., Nakamura, H., Arai, T., Tsukagoshi, M., 2013. Evaluation of paleoenvironment using terpenoid biomarkers in lignites and plant fossil from the Miocene Tokiguchi Porcelain Clay Formation at the Onada mine, Tajimi, central Japan. Int. J. Coal Geol. 107, 78-89. https://doi.org/10.1016/j.coal.2012.10.013.
  • Shibamoto, S., Murata, T., Yamamoto, K., 2016. Determination of double bond positions and geometry of methyl linoleate isomers with dimethyl disulfide adducts by GC/ MS. Lipids 51, 1077-1081. https://doi.org/10.1007/s11745-016-4180-7.
  • Skaloud ˇ, P., Friedl, T., Hallmann, C., Beck, A., Dal Grande, F., 2016. Taxonomic revision and species delimitation of coccoid green algae currently assigned to the genus Dictyochloropsis (Trebouxiophyceae, Chlorophyta). J. Phycol. 52, 599-617. https:// doi.org/10.1111/jpy.12422.
  • Skaloud ˇ, P., Peksa, O., 2010. Evolutionary inferences based on ITS rDNA and actin sequences reveal extensive diversity of the common lichen alga Asterochloris (Trebouxiophyceae, Chlorophyta). Mol. Phylogenet. Evol. 54, 36-46. https://doi. org/10.1016/j.ympev.2009.09.035.
  • Solberg, Y., 1986. Chemical constituents of the lichen species Cetraria islandica. J. Hattori Bot. Lab. 60, 391-406.
  • Sorigu´e, D., L´egeret, B., Cuin´e, S., Morales, P., Mirabella, B., Gu´edeney, G., Li-Beisson, Y., Jetter, R., Peltier, G., Beisson, F., 2016. Microalgae synthesize hydrocarbons from long-chain fatty acids via a light-dependent pathway. Plant Physiol. 171, 2393-2405. https://doi.org/10.1104/pp.16.00462.
  • Torres, A., Dor, I., Rotem, J., Srebnik, M., Dembitsky, V.M., 2003. Characterization of surface n -alkanes and fatty acids of the epiphytic lichen Xanthoria parietina, its photobiont a green alga Trebouxia sp., and its mycobiont, from the Jerusalem hills. Eur. J. Biochem. 270, 2120-2125. https://doi.org/10.1046/j.1432- 1033.2003.03556.x.
  • van Bree, L.G.J., Rijpstra, W.I.C., Cocquyt, C., Al-Dhabi, N.A., Verschuren, D., Sinninghe Damst´e, J.S., de Leeuw, J.W., 2014. Origin and palaeoenvironmental significance of C25 and C27 n -alk-1-enes in a 25,000-year lake-sedimentary record from equatorial East Africa. Geochem. Cosmochim. Acta 145, 89-102. https://doi.org/10.1016/j. gca.2014.08.035.
  • Voytsekhovich, A., Beck, A., 2016. Lichen photobionts of the rocky outcrops of Karadag massif (Crimean Peninsula). Symbiosis 68, 9-24. https://doi.org/10.1007/s13199- 015-0346-y.
  • Vu, T.H., Catheline, D., Delmail, D., Boustie, J., Legrand, P., Loh´ezic-le D´ev´ehat, F., 2016. Gas chromatographic analysis to compare the fatty acid composition of fifteen lichen species, with a focus on Stereocaulon. Lichenol. 48, 323-337. https://doi.org/ 10.1017/S0024282916000141.
  • Wolff, R.E., Wolff, G., McCloskey, J.A., 1966. Characterization of unsaturated hydrocarbons by mass spectrometry. Tetrahedron 22, 3093-3101. https://doi.org/ 10.1016/S0040-4020(01)82288-2.
  • Yamamoto, K., Shibahara, A., Nakayama, T., Kajimoto, G., 1991. Determination of double-bond positions in methylene-interrupted dienoic fatty acids by GC-MS as their dimethyl disulfide adducts. Chem. Phys. Lipids 60, 39-50. https://doi.org/ 10.1016/0009-3084(91)90013-2.
  • Yongdong, Z., Yaling, S., Zhengwen, L., Xiangchao, C., Jinlei, Y., Xiaodan, D., Miao, J., 2015. Long-chain n -alkenes in recent sediment of Lake Lugu (SW China) and their ecological implications. Limnologica 52, 30-40. https://doi.org/10.1016/j. limno.2015.02.004.
  • Zygadlo, J.A., Pignata, M.L., Gonzalez, C.M., Levin, A., 1993. Alkanes in lichens. Phytochemistry 32, 1453-1456. https://doi.org/10.1016/0031-9422(93)85158-N.