Published October 31, 2021 | Version v1
Journal article Restricted

Phloroglucinol derivatives rhotomensones A-G from Rhodomyrtus tomentosa

  • 1. *** & College of Pharmacy, Guilin Medical University, Guilin, 541199, PR China

Description

Mo, Qing-Hu, Yan, Meng-Qi, Zhou, Xian-Li, Luo, Qin, Huang, Xi-Shan, Liang, Cheng-Qin (2021): Phloroglucinol derivatives rhotomensones A-G from Rhodomyrtus tomentosa. Phytochemistry (112890) 190: 1-10, DOI: 10.1016/j.phytochem.2021.112890, URL: http://dx.doi.org/10.1016/j.phytochem.2021.112890

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:B2681D4CF53A4174BB18240FFFB39C49

References

  • Adam, P., Arigoni, D., Bacher, A., Eisenreich, W., 2002. Biosynthesis of hyperforin in Hypericum perforatum. J. Med. Chem. 45, 4786-4793. https://doi.org/10.1021/ jm0209782.
  • Bach, Q.N., Hongthong, S., Quach, L.T., Pham, L.V., Pham, T.V., Kuhakarn, C., Reutrakul, V., Nguyen, P.T.M., 2018. Antimicrobial activity of rhodomyrtone isolated from Rhodomyrtus tomentosa (Aiton) Hassk. Nat. Prod. Res. 34, 2518-2523. https://doi.org/10.1080/14786419.2018.1540479.
  • Barone, V., Bloino, J., Biczysko, M., 2009. Vibrationally-resolved electronic spectra in Gaussian 09. Gaussian 09 Revision A.02 1-20. available online at. http://dreamslab. sns.it/sites/default/files/download/docs/vibronic-spectra-G09-A02.pdf.
  • Brzozowski, A.M., Davies, G.J., 1997. Structure of the Aspergillus oryzae alpha-amylase complexed with the inhibitor acarbose at 2.0 resolution. Biochemistry 36, 10837-10845. https://doi.org/10.1021/bi970539i.
  • Carroll, A.R., Avery, V.M., Duffy, S., Forster, P.I., Guymer, G.P., 2013. Watsonianone A-C, anti-plasmodial β -triketones from the Australian tree, Corymbia watsoniana. Org. Biomol. Chem. 11, 453-458. https://doi.org/10.1039/c2ob26931g.
  • Ciochina, R., Grossman, R.B., 2006. Polycyclic polyprenylated acylphloroglucinols. Chem. Rev. 106, 3963-3986. https://doi.org/10.1021/cr0500582.
  • Durrant, J.D., Votapka, L., Sorensen, J., Amaro, R.E., 2014. POVME 2.0: an enhanced tool for determining pocket shape and volume characteristics. J. Chem. Theor. Comput. 10, 5047-5056. https://doi.org/10.1021/ct500381c.
  • Editorial Board of 'Zhonghua Bencao', 2000. Zhonghua Bencao. Shanghai Science and Technology Publishers, Shanghai, pp. p643-664.
  • Hiranrat, A., Chitbankluoi, W., Mahabusarakam, W., Limsuwan, S., Voravuthikunchai, S. P., 2012a. A new flavellagic acid derivative and phloroglucinol from Rhodomyrtus tomentosa. Nat. Prod. Res. 26, 1904-1909. https://doi.org/10.1080/ 14786419.2011.628666.
  • Hiranrat, A., Mahabusarakam, W., 2008. New acylphloroglucinols from the leaves of Rhodomyrtus tomentosa. Tetrahedron 64, 11193-11197. https://doi.org/10.1016/j. tet.2008.09.054.
  • Hiranrat, A., Mahabusarakam, W., Carroll, A.R., Duffy, S., Avery, V.M., 2012b. Tomentosones A and B, hexacyclic phloroglucinol derivatives from the Thai shrub Rhodomyrtus tomentosa. J. Org. Chem. 77, 680-683. https://doi.org/10.1021/ jo201602y.
  • Limsuwan, S., Trip, E.N., Kouwen, T.R., Piersma, S., Hiranrat, A., Mahabusarakam, W., Voravuthikunchai, S.P., van Dijl, J.M., Kayser, O., 2009. Rhodomyrtone: a new candidate as natural antibacterial drug from Rhodomyrtus tomentosa. Phytomedicine 16, 645-651. https://doi.org/10.1016/j.phymed.2009.01.010.
  • Liu, H.X., Chen, K., Yuan, Y., Xu, Z.F., Tan, H.B., Qiu, S.X., 2016. Rhodomentones A and B, novel meroterpenoids with unique NMR characteristics from Rhodomyrtus tomentosa. Org. Biomol. Chem. 14, 7354-7360. https://doi.org/10.1039/ c6ob01215a.
  • Liu, H., Li, P., Bi, L.S., Wu, W.J., Yan, H., He, L., Qin, X.J., Liu, H.Y., 2020. Plymethylated phloroglucinol meroterpenoids from Rhodomyrtus tomentosa and their antibacterial and acetylcholinesterase inhibitory effects. Chem. Biodivers. 17, e2000489 https:// doi.org/10.1002/cbdv.02000489.
  • Ma, S.J., Yu, J., Yan, D.W., Wang, D.C., Gao, J.M., Zhang, Q., 2018. Meroterpene-like compounds erived from β- caryophyllene as potent α -glucosidase inhibitors. Org. Biomol. Chem. 16, 9454-9460. https://doi.org/10.1039/c8ob02687d.
  • Ong, H.C., Nordiana, M., 1999. Malay ethno-medico botany in Machang, Kelantan, Malaysia. Fitoterapia 70, 502-513. https://doi.org/10.1016/S0367-326X(99) 00077-5.
  • Panthong, A., Kanjanapothi, D., Taesotikul, T., Taylor, W.C., 1991. Ethnobotanical review of medicinal plants from Thai traditional books, Part II: plants with antidiarrheal, laxative and carminative properties. J. Ethnopharmacol. 31, 121-156. https://doi.org/10.1016/0378-8741(91)90001-t.
  • Panthong, A., Kanjanapothi, D., Taylor, W.C., 1986. Ethnobotanical review of medicinal plants from Thai traditional books, part I: plants with anti-inflammatory, antiasthmatic and antihypertensive properties. J. Ethnopharmacol. 18, 213-228. https://doi.org/10.1016/0378-8741(86)90001-2.
  • Qin, X.J., Rauwolf, T.J., Li, P.P., Liu, H., McNeely, J., Hua, Y., Liu, H.Y., Porco Jr., J.A., 2019. Isolation and synthesis of novel meroterpenoids from Rhodomyrtus tomentosa: investigation of a reactive enetrione intermediate. Angew. Chem. Int. Ed. 58, 4291-4296. https://doi.org/10.1002/anie.201814421.
  • Rattanaburi, S., Mahabusarakam, W., Phongpaichit, S., Carroll, A.R., 2013. Acylphloroglucinols from Callistemon lanceolatus DC. Tetrahedron 69, 6070-6075. https://doi.org/10.1016/j.tet.2013.05.085.
  • Shaheen, F., Ahmad, M., Khan, S.N., Hussain, S.S., Anjum, S., Tashkhodjaev, B., Turgunov, K., Sultankhodzhaev, M.N., Choudhary, M.I., Rahman, Atta-ur, 2006. New α -glucosidase inhibitors and antibacterial compounds from Myrtus communis L. Eur. J. Org. Chem. 2006 2371-2377. https://doi.org/10.1002/ejoc.200500936.
  • Trott, O., Olson, A.J., 2010. Software news and update autodock vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 31, 455-461. https://doi.org/10.1002/ jcc.21334.
  • Yamamoto, K., Miyake, H., Kusunoki, M., Osaki, S., 2011. Steric hindrance by 2 amino acid residues determines the substrate specificity of isomaltase from Saccharomyces cerevisiae. J. Biosci. Bioeng. 112, 545-550. https://doi.org/10.1016/j. jbiosc.2011.08.016.
  • Zhang, Y.B., Li, W., Jiang, L., Yang, L., Chen, N.H., Wu, Z.N., Li, Y.L., Wang, G.C., 2018. Cytotoxic and anti-inflammatory active phloroglucinol derivatives from Rhodomyrtus tomentosa. Phytochemistry 153, 111-119. https://doi.org/10.1016/j. phytochem.2018.05.018.
  • Zhao, L.Y., Liu, H.X., Wang, L., Xu, Z.F., Tan, H.B., Qiu, S.X., 2019. Rhodomyrtosone B, a membrane-targeting anti-MRSA natural acylphloroglucinol from Rhodomyrtus tomentosa. J. Ethnopharmacol. 228, 50-57. https://doi.org/10.1016/j. jep.2018.09.011.
  • Zhao, Z., Wu, L., Xie, J., Feng, Y., Tian, J., He, X., Li, B., Wang, L., Wang, X., Zhang, Y., Wu, S., Zheng, X., 2020. Rhodomyrtus tomentosa (Aiton.): a review of phytochemistry, pharmacology and industrial applications research progress. Food Chem. 309, 125715. https://doi.org/10.1016/j.foodchem.2019.125715.