Published April 30, 2022 | Version v1
Journal article Restricted

Bioactive specialised metabolites from the endophytic fungus Xylaria sp. of Cudrania tricuspidata

  • 1. * & Department of Natural Product Chemistry, Key Lab of Chemical Biology of Ministry of Education, School of Pharmaceutical Sciences, Shandong University, No. 44 West

Description

Song, Jintong, Xu, Ke, Liu, Chunyu, Wang, Tian, Luan, Xiaoyi, Zhu, Lihua, Chu, Zhaojun, Fu, Xiaojie, Chang, Wenqiang, Wang, Xiaoning, Lou, Hongxiang (2022): Bioactive specialised metabolites from the endophytic fungus Xylaria sp. of Cudrania tricuspidata. Phytochemistry (113079) 196: 1-9, DOI: 10.1016/j.phytochem.2021.113079, URL: http://dx.doi.org/10.1016/j.phytochem.2021.113079

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FFD0A6335235B72FFFAB3069C556FF9B

References

  • Abate, D., Abraham, W.R., Meyer, H., 1997. Cytochalasins and phytotoxins from the fungus Xylaria obovata. Phytochemistry 44, 1443-1448. https://doi.org/10.1016/ S0031-9422(96)00780-7.
  • Alley, M.C., Scudiero, D.A., Monks, A., Hursey, M.L., Czerwinski, M.J., Fine, D.L., Abbott, B.J., Mayo, J.G., Shoemaker, R.H., Boyd, M.R., 1988. Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay. Cancer Res. 48, 589-601. https://pubmed.ncbi.nlm.nih.gov/3335022.
  • Andolfi, A., Maddau, L., Linaldeddu, B.T., Scanu, B., Cimmino, A., Basso, S., Evidente, A., 2014. Bioactivity studies of oxysporone and several derivatives. Phytochem. Lett. 10, 40-45. https://doi.org/10.1016/j.phytol.2014.07.005.
  • Antkowiak, R., Antkowiak, W.Z., Banczyk, I., Mikolajczyk, L., 2003. A new phenolic metabolite, involutone, isolated from the mushroom Paxillus involutus. Can. J. Chem. 81, 118-124. https://doi.org/10.1139/V02-194.
  • Braesel, J., Gotze, S., Shah, F., Heine, D., Tauber, J., Hertweck, C., Tunlid, A., Stallforth, P., Hoffmeister, D., 2015. Three redundant synthetases secure redoxactive pigment production in the basidiomycete Paxillus involutus. Chem. Biol. (Oxford, U. K.) 22, 1325-1334. https://doi.org/10.1016/j.chembiol.2015.08.016.
  • Chooi, Y.H., Krill, C., Barrow, R.A., Chen, S.S., Trengove, R., Oliver, R.P., Solomon, P.S., 2015. An in planta-expressed polyketide synthase produces (R)-mellein in the wheat pathogen Parastagonospora nodorum. Appl. Environ. Microbiol. 81, 177-186. https:// doi.org/10.1128/AEM.02745-14.
  • Du, L., King, J.B., Morrow, B.H., Shen, J.K., Miller, A.N., Cichewicz, R.H., 2012. Diarylcyclopentendione metabolite obtained from a Preussia typharum isolate procured using an unconventional cultivation approach. J. Nat. Prod. 75, 1819-1823. https://doi.org/10.1021/np300473h.
  • Feling, R., Polborn, K., Steglich, W., Muhlbacher, J., Bringmann, G., 2001. The absolute configuration of the mushroom metabolites involutin and chamonixin. Tetrahedron 57, 7857-7863. https://doi.org/10.1016/S0040-4020(01)00761-X.
  • Gao, C., Luo, J., Liu, X., Ma, L., Yuan, X.H., 2016. Recent advances in studies of chemical compositions and bioactivities of genus Xylaria. Junwu Xuebao 35, 767-781. https://doi.org/10.13346/j.mycosystema.150061.
  • Gerke, J., Bayram, O., Feussner, K., Landesfeind, M., Shelest, E., Feussner, I., Braus, G.H., 2012. Breaking the silence: protein stabilization uncovers silenced biosynthetic gene clusters in the fungus Aspergillus nidulans. Appl. Environ. Microbiol. 78, 8234-8244. https://doi.org/10.1128/AEM.01808-12.
  • Helaly, S.E., Thongbai, B., Stadler, M., 2018. Diversity of biologically active secondary metabolites from endophytic and saprotrophic fungi of the ascomycete order Xylariales. Nat. Prod. Rep. 35, 992-1014. https://doi.org/10.1039/c8np00010g.
  • Li, Y.R., Li, G.H., Sun, L., Li, L., Liu, Y., Kong, D.G., Wang, S.Q., Ren, D.M., Wang, X.N., Lou, H.X., Shen, T., 2018. Ingredients from Litsea garrettii as potential preventive agents against oxidative insult and inflammatory response. Oxid. Med. Cell. https:// doi.org/10.1155/2018/7616852. Longevity 7616852/1-7616852/13.
  • Liu, C.Y., Li, Y.L., Lu, J.H., Qian, L.L., Xu, K., Wang, N.N., Chang, W.Q., Lou, H.X., 2021. Steffimycin F, a new steffimycin-type derivative from the lichen-derived actinomycetes steptomyces sp. J. Mol. Struct. 1227, 129352. https://doi.org/ 10.1016/j.molstruc.2020.129352.
  • Lv, J.H., Yao, L., Zhang, J.X., Wang, L.A., Zhang, J., Wang, Y.P., Xiao, S.Y., Li, C.T., Li, Y., 2021. Novel 2,5-diarylcyclopentenone derivatives from the wild edible mushroom Paxillus involutus and their antioxidant activities. J. Agric. Food Chem. 69, 5040-5048. https://doi.org/10.1021/acs.jafc.1c01160.
  • Ma, H.R., Wang, F.Q., Jin, X.Q., Jiang, J., Hu, S., Cheng, L., Zhang, G., 2021. A new diketopiperazine from an endophytic fungus Aspergillus aculeatus F027. Nat. Prod. Res. 35, 2370-2375. https://doi.org/10.1080/14786419.2019.1677652.
  • Quang, D.N., Hashimoto, T., Tanaka, M., Baumgartner, M., Stadler, M., Asakawa, Y., 2002. Chemical constituents of the ascomycete Daldinia concentrica. J. Nat. Prod. 65, 1869-1874. https://doi.org/10.1021/np020301h.
  • Rivera-Ch´avez, J., Figueroa, M., Gonz´alez, M.D.C., Glenn, A.E., Mata, R., 2015. α -Glucosidase inhibitors from a Xylaria feejeensis associated with Hintonia latiflora. J. Nat. Prod. 78, 730-735. https://doi.org/10.1021/np500897y.
  • Song, F., Wu, S.H., Zhai, Y.Z., Xuan, Q.C., Wang, T., 2014. Secondary metabolites from the genus Xylaria and their bioactivities. Chem. Biodivers. 11, 673-694. https://doi. org/10.1002/cbdv.201200286.
  • Stark, T., Hofmann, T., 2005. Structures, sensory activity, and dose/response functions of 2,5-diketopiperazines in roasted cocoa nibs (Theobroma cacao). J. Agric. Food Chem. 53, 7222-7231. https://doi.org/10.1021/jf051313m.
  • Takaya, Y., Furukawa, T., Miura, S., Akutagawa, T., Hotta, Y., Ishikawa, N., Niwa, M., 2007. Antioxidant constituents in distillation residue of Awamori spirits. J. Agric. Food Chem. 55, 75-79. https://doi.org/10.1021/jf062029d.
  • Tullberg, M., Grotli, M., Luthman, K., 2006. Efficient synthesis of 2,5-diketopiperazines using microwave assisted heating. Tetrahedron 62, 7484-7491. https://doi.org/ 10.1016/j.tet.2006.05.010.
  • Wang, W.X., Li, Z.H., Feng, T., Li, J., Sun, H., Huang, R., Yuan, Q.X., Ai, H.L., Liu, J.K., 2018. Curtachalasins A and B, two cytochalasans with a tetracyclic skeleton from the endophytic fungus Xylaria curta E10. Org. Lett. 20, 7758-7761. https://doi.org/ 10.1021/acs.orglett.8b03110.
  • Wang, W.X., Cheng, G.G., Li, Z.H., Ai, H.L., He, J., Li, J., Feng, T., Liu, J.K., 2019a. Curtachalasins, immunosuppressive agents from the endophytic fungus Xylaria cf. curta. Org. Biomol. Chem. 17, 7985-7994. https://doi.org/10.1039/c9ob01552c.
  • Wang, W.X., Lei, X.X., Ai, H.L., Bai, X., Li, J., He, J., Li, Z.H., Zheng, Y.S., Feng, T., Liu, J. K., 2019b. Cytochalasans from the endophytic fungus Xylaria cf. curta with resistance reversal activity against fluconazole-resistant Candida albicans. Org. Lett. 21, 1108-1111. https://doi.org/10.1021/acs.orglett.9b00015.
  • Wang, W.X., Lei, X.X., Yang, Y.L., Li, Z.H., Ai, H.L., Li, J., Feng, T., Liu, J.K., 2019c. Xylarichalasin A, a halogenated hexacyclic cytochalasan from the fungus Xylaria cf. curta. Org. Lett. 21, 6957-6960. https://doi.org/10.1021/acs.orglett.9b02552.
  • Xu, W.F., Hou, X.M., Yao, F.H., Zheng, N., Li, J., Wang, C.Y., Yang, R.Y., Shao, C.L., 2017. Xylapeptide A, an antibacterial cyclopentapeptide with an uncommon L -pipecolinic acid moiety from the associated fungus Xylaria sp. (GDG-102). Sci. Rep. 7, 1-8. https://doi.org/10.1038/s41598-017-07331-4.
  • Zaman, K.A.U., Park, J.H., DeVine, L., Hu, Z.Q., Wu, X.H., Kim, H.S., Cao, S.G., 2021. Secondary metabolites from the leather coral-derived fungal strain Xylaria sp. FM1005 and their glycoprotein IIb/IIIa inhibitory activity. J. Nat. Prod. 84, 466-473. https://doi.org/10.1021/acs.jnatprod.0c01330.
  • Zhao, J., Shan, T., Mou, Y., Zhou, L., 2011. Plant-derived bioactive compounds produced by endophytic fungi. Mini Rev. Med. Chem. 11, 159-168. https://doi.org/10.2174/ 138955711794519492.