Published September 30, 2022
| Version v1
Journal article
Restricted
Chemical constituents of Entandrophragma angolense and their anti-inflammatory activity
- 1. * & Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, 60612, United States
Description
Youn, Isoo, Han, Kyu-Yeon, Gurgul, Aleksandra, Wu, Zhenlong, Lee, Hyun, Che, Chun-Tao (2022): Chemical constituents of Entandrophragma angolense and their anti-inflammatory activity. Phytochemistry (113276) 201: 1-11, DOI: 10.1016/j.phytochem.2022.113276, URL: http://dx.doi.org/10.1016/j.phytochem.2022.113276
Files
Linked records
Additional details
Identifiers
- LSID
- urn:lsid:plazi.org:pub:B40E9210903DFF83FFE567077C64FFCF
References
- Abd El-Razek, M., 2007. NMR Assignments of four catechin epimers. Asian J. Chem. 19, 4867.
- Achenbach, H., Benirschke, G., 1997. Joannesialactone and other compounds from Joannesia princeps. Phytochemistry 45, 149-157. https://doi.org/10.1016/S0031- 9422(96)00777-7.
- Almeida, A., Dong, L., Appendino, G., Bak, S., 2020. Plant triterpenoids with bondmissing skeletons: biogenesis, distribution, and bioactivity. Nat. Prod. Rep. 37, 1207-1228. https://doi.org/10.1039/c9np00030e.
- Arsianti, A., Astuti, H., Simadibrata, D.M., Adyasa, Z.M., Amartya, D., Bahtiar, A., Tanimoto, H., Kakiuchi, K., 2018. Synthesis and in vitro antimalarial activity of alkyl esters gallate as a growth inhibitors of Plasmodium falciparum. Orient. J. Chem. 34, 655. https://doi.org/10.13005/ojc/340207.
- Banskota, A.H., Tezuka, Y., Tran, K.Q., Tanaka, K., Saiki, I., Kadota, S., 2000. Thirteen novel cycloartane-type triterpenes from Combretum quadrangulare. J. Nat. Prod. 63, 57-64. https://doi.org/10.1021/np990336q.
- Baszczynski, O., Watt, J.M., Rozewitz, M.D., Guse, A.H., Fliegert, R., Potter, B.V., 2019. Synthesis of terminal ribose analogues of adenosine 5'-diphosphate ribose as probes for the transient receptor potential cation channel TRPM2. J. Org. Chem. 84, 6143-6157. https://doi.org/10.1021/acs.joc.9b00338.
- Bingham, C.O., 2002. The pathogenesis of rheumatoid arthritis: pivotal cytokines involved in bone degradation and inflammation. J. Rheumatol. 65, 3-9.
- Bruhn, T., Hemberger, Y., Schaumloffel ¨, A., Bringmann, G., 2012. SpecDis, Version 1.53. University of Wuerzburg, Germany.
- Burkill, H.M., 1995. The Useful Plants of West Tropical Africa. Royal Botanic Gardens, Richmond, UK.
- Cardinal, S., Azelmat, J., Grenier, D., Voyer, N., 2016. Anti-inflammatory properties of quebecol and its derivatives. Bioorg. Med. Chem. Lett. 26, 440-444. https://doi.org/ 10.1016/j.bmcl.2015.11.096.
- Connolly, J.D., Phillips, W.R., Mulholland, D.A., Taylor, D.A.H., 1981. Spicatin, a protolimonoid from Entandrophragma spicatum. Phytochemistry 20, 2596-2597. https://doi.org/10.1016/0031-9422(81)83107-X.
- Dzubak, P., Hajduch, M., Vydra, D., Hustova, A., Kvasnica, M., Biedermann, D., Markova, L., Urban, M., Sarek, J., 2006. Pharmacological activities of natural triterpenoids and their therapeutic implications. Nat. Prod. Rep. 23, 394-411. https://doi.org/10.1039/b515312n.
- Frisch, M., Trucks, G., Schlegel, H., Scuseria, G., Robb, M., Cheeseman, J., Scalmani, G., Barone, V., Mennucci, B., Petersson, G., 2009. Gaussian 09, Revision A.02. Gaussian, Inc, Wallingford, CT.
- Happi, G.M., Ngadjui, B.T., Green, I.R., Kouam, F.S., 2018. Phytochemistry and pharmacology of the genus Entandrophragma over the 50 years from 1967 to 2018: a 'golden' overview. J. Pharm. Pharmacol. 70, 1431-1460. https://doi.org/10.1111/ jphp.13005.
- Happi, G.M., Wouamba, S.C.N., Ismail, M., Kouam, S.F., Frese, M., Lenta, B.N., Sewald, N., 2020. Ergostane-type steroids from the Cameroonian 'white tiama' Entandrophragma angolense. Steroids 156, 108584. https://doi.org/10.1016/j. steroids.2020.108584.
- Iqbal, P., Critchley, K., Bowen, J., Attwood, D., Tunnicliffe, D., Evans, S.D., Preece, J.A., 2007. Fabrication of a nanoparticle gradient substrate by thermochemical manipulation of an ester functionalized SAM. J. Mater. Chem. 17, 5097-5110. https://doi.org/10.1039/B712687E.
- Jolad, S.D., Hoffmann, J.J., Schram, K.H., Cole, J.R., Tempesta, M.S., Bates, R.B., 1981. Constituents of Trichilia hispida (Meliaceae). 4. Hispidols A and B, two new tirucallane triterpenoids. J. Org. Chem. 46, 4085-4088. https://doi.org/10.1021/ jo00333a037.
- Katende, A.B., Birnie, A., Tengn¨as, B., 1995. Useful Trees and Shrubs for Uganda: Identification, Propagation, and Management for Agricultural and Pastoral Communities. Regional Soil Conservation Unit, Nairobi, Kenya.
- Kim, T.H., Lee, J., Kim, H.-J., Jo, C., 2017. Plasma-Induced degradation of quercetin associated with the enhancement of biological activities. J. Agric. Food Chem. 65, 6929-6935. https://doi.org/10.1021/acs.jafc.7b00987.
- Kipassa, N.T., Iwagawa, T., Okamura, H., Doe, M., Morimoto, Y., Nakatani, M., 2008. Limonoids from the stem bark of Cedrela odorata. Phytochemistry 69, 1782-1787. https://doi.org/10.1016/j.phytochem.2007.12.015.
- Latt´e, K.P., Kaloga, M., Sch¨afer, A., Kolodziej, H., 2008. An ellagitannin, n -butyl gallate, two aryltetralin lignans, and an unprecedented diterpene ester from Pelargonium reniforme. Phytochemistry 69, 820-826. https://doi.org/10.1016/j. phytochem.2007.08.032.
- Lee, H., Mittal, A., Patel, K., Gatuz, J.L., Truong, L., Torres, J., Mulhearn, D.C., Johnson, M.E., 2014. Identification of novel drug scaffolds for inhibition of SARSCoV 3-chymotrypsin-like protease using virtual and high-throughput screenings. Bioorg. Med. Chem. 22, 167-177. https://doi.org/10.1016/j.bmc.2013.11.041.
- Lee, H., Ren, J., Pesavento, R.P., Ojeda, I., Rice, A.J., Lv, H., Kwon, Y., Johnson, M.E., 2019. Identification and design of novel small molecule inhibitors against MERS-CoV papain-like protease via high-throughput screening and molecular modeling. Bioorg. Med. Chem. 27, 1981-1989. https://doi.org/10.1016/j.bmc.2019.03.050.
- Lee, S.-J., Lee, I.-S., Mar, W., 2003. Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 activity by 1,2,3,4,6-penta- O -galloyl- β -D-glucose in murine macrophage cells. Arch Pharm. Res. (Seoul) 26, 832-839. https://doi.org/10.1007/ BF02980029.
- Liang, Y.-F., Li, X., Wang, X., Zou, M., Tang, C., Liang, Y., Song, S., Jiao, N., 2016. Conversion of simple cyclohexanones into catechols. J. Am. Chem. Soc. 138, 12271-12277. https://doi.org/10.1021/jacs.6b07269.
- Minhas, R., Bansal, Y., Bansal, G., 2020. Inducible nitric oxide synthase inhibitors: a comprehensive update. Med. Res. Rev. 40, 823-855. https://doi.org/10.1002/ med.21636.
- Mireku, E.A., Kusari, S., Eckelmann, D., Mensah, A.Y., Talontsi, F.M., Spiteller, M., 2015. Anti-inflammatory tirucallane triterpenoids from Anopyxis klaineana pierre (engl.) (rhizophoraceae). Fitoterapia 106, 84-91. https://doi.org/10.1016/j. fitote.2015.08.007.
- Mohamed, E.I., Zaki, M.A., Chaurasiya, N.D., Owis, A.I., AbouZid, S., Wang, Y.-H., Avula, B., Seida, A.A., Tekwani, B.L., Ross, S.A., 2018. Monoamine oxidases inhibitors from Colvillea racemosa: isolation, biological evaluation, and computational study. Fitoterapia 124, 217-223. https://doi.org/10.1016/j. fitote.2017.11.009.
- Muhammad, D., Lalun, N., Bobichon, H., Le Magrex Debar, E., Gangloff, S.C., Nour, M., Voutquenne-Nazabadioko, L., 2017. Triterpenoid saponins and other glycosides from the stems and bark of Jaffrea xerocarpa and their biological activity. Phytochemistry 141, 121-130. https://doi.org/10.1016/j.phytochem.2017.05.018.
- Niu, X., Qiu, M., Li, Z., Lu, Y., Cao, P., Zheng, Q., 2004. Two novel 3, 4-seco - trinorlanostane triterpenoids isolated from Ganoderma fornicatum. Tetrahedron Lett. 45, 2989-2993. https://doi.org/10.1016/j.tetlet.2004.02.056.
- Njar, V., Adesanwo, J., Makinde, J., Taiwo, O., 1994. Antiulcer activity of the stem bark extract of Entandrophragma angolense. Phytother Res. 8, 46-48.
- Nsiama, T.K., Okamura, H., Hamada, T., Morimoto, Y., Doe, M., Iwagawa, T., Nakatani, M., 2011. Rings D-seco and B,D-seco tetranortriterpenoids from root bark of Entandrophragma angolense. Phytochemistry 72, 1854-1858. https://doi.org/ 10.1016/j.phytochem.2011.05.014.
- Orisadipe, A.T., Adesomoju, A.A., D' Ambrosio, M., Guerriero, A., Okogun, J.I., 2005. Tirucallane triterpenes from the leaf extract of Entandrophragma angolense. Phytochemistry 66, 2324-2328.
- Orishadipe, A.T., Ibekwe, N.N., Adesomoju, A.A., Okogun, J.I., 2012. Chemical composition and antimicrobial activity of the seed oil of Entandrophragma angolense (Welw) C. DC. Afr. J. Pure Appl. Chem. 6, 184-187. https://doi.org/10.5897/ AJPAC12.028.
- Orita, K., Hiramoto, K., Kobayashi, H., Ishii, M., Sekiyama, A., Inoue, M., 2011. Inducible nitric oxide synthase (iNOS) and α- melanocyte-stimulating hormones of iNOS origin play important roles in the allergic reactions of atopic dermatitis in mice. Exp. Dermatol. 20, 911-914. https://doi.org/10.1111/j.1600-0625.2011.01360.x.
- Pescitelli, G., Di Bari, L., Berova, N., 2014. Application of electronic circular dichroism in the study of supramolecular systems. Chem. Soc. Rev. 43, 5211-5233. https://doi. org/10.1039/C4CS00104D.
- Raab, T., Barron, D., Vera, F.A., Crespy, V., Oliveira, M., Williamson, G., 2010. Catechin glucosides: occurrence, synthesis, and stability. J. Agric. Food Chem. 58, 2138-2149.
- Rhee, I.K., van de Meent, M., Ingkaninan, K., Verpoorte, R., 2001. Screening for acetylcholinesterase inhibitors from Amaryllidaceae using silica gel thin-layer chromatography in combination with bioactivity staining. J. Chromatogr. A 915, 217-223. https://doi.org/10.1016/s0021-9673(01)00624-0.
- Rogers, C.B., 1998. Cycloartenoid dienone acids and lactones from Combretum erythrophyllum. Phytochemistry 49, 2069-2076. https://doi.org/10.1016/S0031- 9422(98)00414-2.
- Sakamoto, A., Tanaka, Y., Inoue, T., Kikuchi, T., Kajimoto, T., Muraoka, O., Yamada, T., Tanaka, R., 2013. Andirolides Q-V from the flower of andiroba (Carapa guianensis, Meliaceae). Fitoterapia 90, 20-29. https://doi.org/10.1016/j.fitote.2013.07.001.
- Sakamoto, A., Tanaka, Y., Yamada, T., Kikuchi, T., Muraoka, O., Ninomiya, K., Morikawa, T., Tanaka, R., 2015. Andirolides W-Y from the flower oil of andiroba (Carapa guianensis, Meliaceae). Fitoterapia 100, 81-87. https://doi.org/10.1016/j. fitote.2014.09.003.
- Sharma, J., Al-Omran, A., Parvathy, S., 2007. Role of nitric oxide in inflammatory diseases. Inflammopharmacology 15, 252-259. https://doi.org/10.1007/s10787- 007-0013-x.
- Shen, Z., Ratia, K., Cooper, L., Kong, D., Lee, H., Kwon, Y., Li, Y., Alqarni, S., Huang, F., Dubrovskyi, O., 2021. Design of SARS-CoV-2 PLpro inhibitors for COVID-19 antiviral therapy leveraging binding cooperativity. J. Med. Chem. https://doi.org/10.1021/ acs.jmedchem.1c01307.
- Smith, S.G., Goodman, J.M., 2010. Assigning stereochemistry to single diastereoisomers by GIAO NMR calculation: the DP4 probability. J. Am. Chem. Soc. 132, 12946-12959. https://doi.org/10.1021/ja105035r.
- Steinert, J.R., Chernova, T., Forsythe, I.D., 2010. Nitric oxide signaling in brain function, dysfunction, and dementia. Neuroscientist 16, 435-452. https://doi.org/10.1177/ 1073858410366481.
- Sun, M., Guo, B., Xu, M., Zhao, M., Onakpa, M.M., Wu, Z., Burdette, J.E., Che, C.-T., 2021. (9β H)-and 17-nor-pimaranes from Icacina oliviformis. J. Nat. Prod. 84, 949-955. https://doi.org/10.1021/acs.jnatprod.9b01131.
- Tan, Q.-G., Luo, X.-D., 2011. Meliaceous limonoids: chemistry and biological activities. Chem. Rev. 111, 7437-7522. https://doi.org/10.1021/cr9004023.
- Tanaka, Y., Sakamoto, A., Inoue, T., Yamada, T., Kikuchi, T., Kajimoto, T., Muraoka, O., Sato, A., Wataya, Y., Kim, H.-S., 2012. Andirolides H-P from the flower of andiroba (Carapa guianensis, Meliaceae). Tetrahedron 68, 3669-3677. https://doi.org/ 10.1016/j.tet.2011.12.076.
- Tanaka, Y., Yamada, T., In, Y., Muraoka, O., Kajimoto, T., Tanaka, R., 2011. Absolute stereostructure of andirolides A-G from the flower of Carapa guianensis (Meliaceae). Tetrahedron 67, 782-792. https://doi.org/10.1016/j.tet.2010.11.028.
- Trinh, B.T., Bui, D.N., Nguyen, L.T., Nguyen, H.T., Nguyen, C.N., Nguyen, L.-H.D., Huynh, T.N., Cao, T.T., Nguyen, L.-T.T., 2021. Triterpenoids from the bark of Entandrophragma angolense. Nat. Prod. Res. 1-8.
- Tundis, R., Loizzo, M.R., Menichini, F., 2014. An overview on chemical aspects and potential health benefits of limonoids and their derivatives. Crit. Rev. Food Sci. Nutr. 54, 225-250. https://doi.org/10.1080/10408398.2011.581400.
- Vincken, J.-P., Heng, L., de Groot, A., Gruppen, H., 2007. Saponins, classification and occurrence in the plant kingdom. Phytochemistry 68, 275-297.
- Wang, M., Carver, J.J., Phelan, V.V., Sanchez, L.M., Garg, N., Peng, Y., Nguyen, D.D., Watrous, J., Kapono, C.A., Luzzatto-Knaan, T., 2016. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat. Biotechnol. 34, 828-837. https://doi.org/10.1038/nbt.3597.
- Wu, J., Yang, S.-X., Li, M.-Y., Feng, G., Pan, J.-Y., Xiao, Q., Sinkkonen, J., Satyanandamurty, T., 2010. Limonoids and tirucallane derivatives from the seeds of a Krishna mangrove, Xylocarpus moluccensis. J. Nat. Prod. 73, 644-649. https://doi. org/10.1021/np900823c.
- Yang, J.Y., Sanchez, L.M., Rath, C.M., Liu, X., Boudreau, P.D., Bruns, N., Glukhov, E., Wodtke, A., De Felicio, R., Fenner, A., 2013. Molecular networking as a dereplication strategy. J. Nat. Prod. 76, 1686-1699. https://doi.org/10.1021/np400413s.
- Yang, M.-H., Wang, J.-S., Luo, J.-G., Wang, X.-B., Kong, L.-Y., 2011. Chisopanins A-K, 11 new protolimonoids from Chisocheton paniculatus and their anti-inflammatory activities. Bioorg. Med. Chem. 19, 1409-1417. https://doi.org/10.1016/j. bmc.2011.01.007.
- Youn, I., Wu, Z., Papa, S., Burdette, J.E., Oyawaluja, B.O., Lee, H., Che, C.-T., 2021. Limonoids and other triterpenoids from Entandrophragma angolense. Fitoterapia 150, 104846. https://doi.org/10.1016/j.fitote.2021.104846.
- Zhang, F., Wang, J.-S., Gu, Y.-C., Kong, L.-Y., 2012. Cytotoxic and anti-inflammatory triterpenoids from Toona ciliata. J. Nat. Prod. 75, 538-546.
- Zhang, W.-Y., An, F.-L., Zhou, M.-M., Chen, M.-H., Jian, K.-L., Quasie, O., Yang, M.-H., Luo, J., Kong, L.-Y., 2016. Limonoids with diverse frameworks from the stem bark of