Published October 31, 2022
| Version v1
Journal article
Restricted
Polyacetylenes from the roots of Cirsium japonicum var. ussuriense
Creators
- 1. * & College of Pharmacy, Chungbuk National University, Cheongju, 28610, Republic of Korea
Description
Lee, Seung Hyun, Kim, Jun Gu, Le, Thi Phuong Linh, Han, Jae Sang, Cho, Yong Beom, Lee, Mi Kyeong, Lee, Dongho, Hwang, Bang Yeon (2022): Polyacetylenes from the roots of Cirsium japonicum var. ussuriense. Phytochemistry (113319) 202: 1-8, DOI: 10.1016/j.phytochem.2022.113319, URL: http://dx.doi.org/10.1016/j.phytochem.2022.113319
Files
Linked records
Oops! Something went wrong while fetching results.
Additional details
Identifiers
- LSID
- urn:lsid:plazi.org:pub:FFCAFFC1107F2D78FF8F0B5FFFC93633
References
- Bae, K.H., 2000. The Medicinal Plants of Korea. Kyohak Publishing Co., Seoul, Korea, p. 501.
- Baek, N.I., Park, J.D., Lee, Y.H., Jeong, S.Y., Kim, S.I., 1995. A novel polyacetylene from Cirsium spp. Yakhak Hoeji 39, 268-275.
- Chen, Y., Peng, S., Luo, Q., Zhang, J., Guo, Q., Zhang, Y., Chai, X., 2015. Chemical and pharmacological progress on polyacetylenes isolated from the family Apiaceae.
- Christensen, L.P., 2020. Bioactive C17 and C18 acetylenic oxylipins from terrestrial plants as potential lead compounds for anticancer drug development. Molecules 25, 2568. https://doi.org/10.3390/molecules25112568.
- Cinelli, M.A., Do, H.T., Miley, G.P., Silverman, R.B., 2020. Inducible nitric oxide synthase: regulation, structure, and inhibition. Med. Res. Rev. 40, 158-189. https:// doi.org/10.1002/med.21599.
- Han, H.S., Shin, J.S., Lee, S.B., Park, J.C., Lee, K.T., 2018. Cirsimarin, a flavone glucoside from the aerial part of Cirsium japonicum var. ussuriense (Regel) Kitam. ex Ohwi, suppresses the JAK/STAT and IRF-3 signaling pathway in LPS-stimulated RAW 264.7 macrophages. Chem. Biol. Interact. 293, 38-47. https://doi.org/10.1016/j.
- Jeong, D.M., Jung, H.A., Choi, J.S., 2008. Comparative antioxidant activity and HPLC profiles of some selected Korean thistles. Arch Pharm. Res. (Seoul) 31, 28-33. https://doi.org/10.1007/s12272-008-1116-7.
- Jeong, D., Dong, G.Z., Lee, H.J., Ryu, J.H., 2019. Anti-inflammatory compounds from Atractylodes macrocephala. Molecules 24, 1859. https://doi.org/10.3390/ molecules24101859.
- Kang, T.J., Moon, J.S., Lee, S., Yim, D., 2011. Polyacetylene compound from Cirsium japonicum var. ussuriense inhibits the LPS-induced inflammatory reaction via suppression of NF-κB activity in RAW 264.7 cells. Biomol. Ther. 19, 97-101. https:// doi.org/10.4062/biomolther.2011.19.1.097.
- Kim, J.G., 1989. Illustrated Natural Drugs Encyclopedia, vol. 1. Namsandang, Seoul, Korea, p. 37.
- Kim, J.G., Lee, J.W., Le, T.P.L., Han, J.S., Kwon, H., Lee, D., Hong, J.T., Kim, Y., Lee, M. K., Hwang, B.Y., 2021. Diterpenoids and diacetylenes from the roots of Aralia cordata with inhibitory effects on nitric oxide production. J. Nat. Prod. 84, 230-238. https:// doi.org/10.1021/acs.jnatprod.0c00842.
- Kozminski ´, W., Nanz, D., 2000. Sensitivity improvement and new acquisition scheme of heteronuclear active-coupling-pattern-tilting spectroscopy. J. Magn. Reson. 142, 294-299. https://doi.org/10.1006/jmre.1999.1939.
- Kumar, S., Singh, R.K., Bhardwaj, T.R., 2017. Therapeutic role of nitric oxide as emerging molecule. Biomed. Pharmacother. 85, 182-201. https://doi.org/10.1016/ j.biopha.2016.11.125.
- Lai, W.C., Wu, Y.C., Danko ´, Cheng, Y.B., Hsieh, T.J., Hsieh, C.T., Tsai, Y.C., El-Shazly, M., Martins, A., Hohmann, J., Hunyadi, A., Chang, F.R., 2014. Bioactive constituents of Cirsium japonicum var. asutrale. J. Nat. Prod. 77, 1624-1631. https://doi.org/ 10.1021/np500233t.
- Li, X.R., Liu, J., Peng, C., Zhou, Q.M., Liu, F., Guo, L., Xiong, L., 2021. Polyacetylene glucosides from the florets of Carthamus tinctorius and their anti-inflammatory activity. Phytochemistry 187, 112770. https://doi.org/10.1016/j.
- Matsumori, N., Kaneno, D., Murata, M., Nakamura, H., Tachibana, K., 1999.
- Menche, D., 2008. New methods for stereochemical determination of complex polyketides: configurational assignment of novel metabolites from myxobacteria.
- Negri, R., 2015. Polyacetylenes from terrestrial plants and fungi: recent phytochemical and biological advances. Fitoterapia 106, 92-109. https://doi.org/10.1016/j.
- Park, J.C., Hur, J.M., Park, J.G., Kim, S.C., Park, J.R., Choi, S.H., Choi, J.W., 2004. Effects of methanol extract of Cirsium japonicum var. ussuriense and its principle, hispidulin- 7-O-neohesperidoside on hepatic alcohol-metabolizing enzymes and lipid peroxidation in ethanol-treated rats. Phytother Res. 18, 19-24. https://doi.org/ 10.1002/ptr.1299.
- Park, J.C., Yoo, H., Kim, C.E., Shim, S.Y., Lee, M., 2017. Hispidulin-7-O-neohesperidoside from Cirsium japonicum var. ussuriense attenuates the production of inflammatory mediators in LPS-induced RAW 264.7 cells and HT-29 cells. Phcog. Mag. 13, 707-711. https://doi.org/10.4103/0973-1296.218116.
- Shim, H., Moon, J.S., Lee, S., Yim, D., Kang, T.J., 2012. Polyacetylene compound from Cirsium japonicum var. ussuriense inhibited caspase-1-mediated IL-1β expression.
- Takaishi, Y., Okuyama, T., Masuda, A., Nakano, K., Murakami, K., Tomimatsu, T., 1990. Acetylenes from Cirsium japonicum. Phytochemistry 29, 3849-3852. https://doi.org/ 10.1016/0031-9422(90)85345-G.
- Takaishi, Y., Okuyama, T., Nakano, K., Murakami, K., Tomimatsu, T., 1991. Absolute configuration of a triolacetylene from Cirsium japonicum. Phytochemistry 30, 2321-2324. https://doi.org/10.1016/0031-9422(91)83640-7.
- Thao, N.T., Cuong, T.D., Hung, T.M., Lee, J.H., Na, M., Son, J.K., Jung, H.J., Fang, Z., Woo, M.H., Choi, J.S., Min, B.S., 2011. Simultaneous determination of bioactive flavonoids in some selected Korean thistles by high-performance liquid chromatography. Arch Pharm. Res. (Seoul) 34, 455-461. https://doi.org/10.1007/ s12272-011-0314-x.
- Tsukamoto, S., Kato, H., Hirota, H., Fusetani, N., 1997. Seven new polyacetylene derivatives, showing both potent metamorphosis-inducing activity in ascidian larvae and antifouling activity against barnacle larvae, from the marine sponge Callyspongia truncata. J. Nat. Prod. 60, 126-130. https://doi.org/10.1021/np9606097.
- Wavefunction Inc., 2013. Spartan '14 (Irvine, CA, USA).
- Yao, C.M., Yang, X.W., 2014. Bioactivity-guided isolation of polyacetylenes with inhibitory activity against NO production in LPS-activated RAW264.7 macrophages from the rhizomes of Atractylodes macrocephala. J. Ethnopharmacol. 151, 791-799. https://doi.org/10.1016/j.jep.2013.10.005.