Published October 31, 2022 | Version v1
Journal article Restricted

Undescribed specialised metabolites from the endophytic fungus Emericella sp. XL029 and their antimicrobial activities

  • 1. ** & * & School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China

Description

Xian, Peng-Jie, Liu, Shu-Zhi, Wang, Wen-Jing, Yang, Sheng-Xiang, Feng, Zhang, Yang, Xiao-Long (2022): Undescribed specialised metabolites from the endophytic fungus Emericella sp. XL029 and their antimicrobial activities. Phytochemistry (113303) 202: 1-11, DOI: 10.1016/j.phytochem.2022.113303, URL: http://dx.doi.org/10.1016/j.phytochem.2022.113303

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FFF3FA05FFADFFC9FFC8FF8A351CFFE8

References

  • Ancheeva, E., Daletos, G., Proksch, P., 2020. Bioactive secondary metabolites from endophytic fungi. Curr. Med. Chem. 27, 1836-1854. https://doi.org/10.2174/ 0929867326666190916144709.
  • Andolfi, A., Boari, A., Evidente, M., Cimmino, A., Vurro, M., Ash, G., Evidente, A., 2015. Gulypyrones A and B and phomentrioloxins B and C produced by Diaporthe gulyae, a potential mycoherbicide for saffron thistle (Carthamus lanatus). J. Nat. Prod. 78, 623-629. https://doi.org/10.1021/np500570h.
  • Bertrand, S., Bohni, N., Schnee, S., Schumpp, O., Gindro, K., Wolfender, J.L., 2014. Metabolite induction via microorganism co-culture: a potential way to enhance chemical diversity for drug discovery. Biotechnol. Adv. 32, 1180-1204. https://doi. org/10.1016/j.biotechadv.2014.03.001.
  • Bode, H.B., Bethe, B., H¨ofs, R., Zeeck, A., 2002. Big effects from small changes: possible ways to explore nature' s chemical diversity. Chembiochem 3, 619-627. https://doi. org/10.1002/1439-7633(20020703)3:7<619::AIDCBIC619>3.0.CO;2-9.
  • Cao, F., Zhu, H.J., Zhu, A., Liu, Y.F., 2018. Aspergillus Sp. ZA-01 and Xanthene Derived from it, and its Application in Antibacterial Agent. China Patent, CN108660082B.
  • Chen, H.L., Zhao, W.T., Liu, Q.P., Chen, H.Y., Zhao, W., Yang, D.F., Yang, X.L., 2020. (±)-Preisomide: a new alkaloid featuring a rare naturally occurring tetrahydro-2H-1,2-oxazin skeleton from an endophytic fungus Preussia isomera by using OSMAC strategy. Fitoter.apia 141, 104475. https://doi.org/10.1016/j.fitote.20_20.104475.
  • Chen, H.Y., Liu, T.K., Yang, J., Yang, X.L., 2019. Emerones A-C: three novel merosesquiterpenoids with unprecedented skeletons from Emericella sp. XL029. Org. Biomol. Chem. 17, 8450-8455. https://doi.org/10.1039/c9ob0178_8g.
  • Figueroa, M., Gonz´alez, M.C., Rodriguez-Sotres, R., Sosa-Peinado, A., Gonz´alez- Andrade, M., Cerda-Garcia-Rojas, C.M., Mata, R., 2009. Calmodulin inhibitors from the fungus Emericella sp. Bioorg. Med. Chem. 17, 2167-2174. https://doi.org/ 10.1016/j.bmc.2008.10.079.
  • Fisher, M.C., Hawkins, N.J., Sanglard, D., Gurr, S.J., 2018. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 360, 739-742. https://doi.org/10.1126/science.aap7999.
  • Grimblat, N., Zanardi, M.M., Sarotti, A.M., 2015. Beyond DP4: an improved probability for the stereochemical assignment of isomeric compounds using quantum chemical calculations of NMR shifts. J. Org. Chem. 80, 12526-12534. https://doi.org/ 10.1021/acs.joc.5b02396.
  • Gupta, S., Chaturvedi, P., Kulkarni, M.G., Staden, J.V., 2020. A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnol. Adv. 39, 107462 https://doi.org/10.1016/j.biotechadv.2019.107462.
  • Harvey, A.L., Edrada-Ebel, R., Quinn, R.J., 2015. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 14, 111-129. https:// doi.org/10.1038/nrd4510.
  • Hradil, P., Melnicky, R., Grepl, M., Koristek, K., Hlavac, J., Bertolasi, V., 2006. 3-Benzoyl- 4-hydroxyisochromen-1-one derivatives, their synthesis and synthetic application. Heterocycles 68, 1845-1859. https://doi.org/10.3987/COM-06-10757.
  • Jo, G., Shin, S.Y., Lee, Y., Hyun, J., Dong, K.S., Park, J.C., Kim, H.S., Lee, Y.H., Lim, Y., 2011. A compound isolated from Rumex japonicus induces early growth response gene-1 expression. J. Korean Soc. Appl. Biol. Chem. 54, 637-643. https://doi.org/ 10.3839/jksabc.2011.097.
  • Jubeh, B., Breijyeh, Z., Karaman, R., 2020. Antibacterial prodrugs to overcome bacterial resistance. Molecules 25, 1543. https://doi.org/10.3390/molecules 25071543.
  • Li, S.F., Di, Y.T., Wang, Y.H., Tan, C.J., Fang, X., Zhang, Y., Zheng, Y.T., Li, L., He, H.P., Li, S.L., Hao, X.J., 2010. Anthraquinones and lignans from Cassia occidentalis. Helv. Chim. Acta 93, 1795-1802. https://doi.org/10.1002/hlca.20_0900460.
  • Ma, S.J., Yu, J., Yan, D.W., Wang, D.C., Gao, J.M., Zhang, Q., 2018. Meroterpene-like compounds derived from β- caryophyllene as potent α- glucosidase inhibitors. Org. Biomol. Chem. 16, 9454-9460. https://doi.org/10.1039/c8ob02687d.
  • Macke, S., Jerz, G., Empl, M.T., Steinberg, P., Winterhalter, P., 2012. Activity-guided isolation of resveratrol oligomers from a grapevine-shoot extract using countercurrent chromatography. J. Agric. Food Chem. 60, 11919-11927. https:// doi.org/10.1021/jf3030584.
  • Masuma, R., Tanaka, Y., Tanaka, H., Omura, S., 1986. Production of nanaomycin and other antibiotics by phosphate-depressed fermentation using phosphate-trapping agents. J. Antibiot. 39, 1557-1564. https://doi.org/10.7164/antibiotics.39.1557.
  • Miao, F.P., Li, X.D., Liu, X.H., Cichewicz, R.H., Ji, N.Y., 2012. Secondary metabolites from an algicolous Aspergillus versicolor strain. Mar. Drugs 10, 131-139. https://doi. org/10.3390/md10010131.
  • Moosophon, P., Kanokmedhakul, S., Kanokmedhakul, K., Soytong, K., 2009. Prenylxanthones and a bicyclo[3.3.1]nona-2,6-diene derivative from the fungus Emericella rugulosa. J. Nat. Prod. 72, 1442-1446. https://doi.org/10.1021/np8_ 00805f.
  • Nett, M., Ikeda, H., Moore, B.S., 2009. Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat. Prod. Rep. 26, 1362-1384. https://doi.org/ 10.1039/b817069j.
  • Newman, D.J., Cragg, G.M., 2020. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 83, 770-803. https:// doi.org/10.1021/acs.jnatprod.9b01285.
  • O' Neill, J., 2016. Tackling Drug-Resistant Infections Globally: Final Report and Recommendations. The Review on Antimicrobial Resistance. Wellcome Trust, London, UK.
  • Okada, M., Matsuda, Y., Mitsuhashi, T., Hoshino, S., Mori, T., Nakagawa, K., Quan, Z., Qin, B., Zhang, H., Hayashi, F., Kawaide, H., Abe, I., 2016. Genome-based discovery of an unprecedented cyclization mode in fungal sesterterpenoid biosynthesis. J. Am. Chem. Soc. 138, 10011-10018. https://doi.org/10.1021/jac_s.6b05799.
  • Pang, X.J., Zhang, S.B., Xian, P.J., Wu, X., Yang, D.F., Fu, H.Y., Yang, X.L., 2018a. Emericellins A and B: two sesquiterpenoids with an unprecedented tricyclo [4,4,2,1] hendecane scaffold from the liquid cultures of endophytic fungus Emericella sp. XL 029. Fitoterapia 131, 55-58. https://doi.org/10.1016/j.fitote.2018.10.022.
  • Pang, X.J., Zhang, S.B., Chen, H.L., Zhao, W.T., Yang, D.F., Xian, P.J., Xu, L.L., Tao, Y.D., Fu, H.Y., Yang, X.L., 2018b. Emericelactones A-D: four novel polyketides produced by Emericella sp. XL 029, a fungus associated the leaves of Panax notoginseng. Tetrahedron Lett. 59, 4566-4570. https://doi.org/10.1016/j.tetlet.2018.11.032.
  • Parsons, S., Flack, H.D., Wagner, T., 2013. Use of intensity quotients and differences in absolute structure refinement. Acta Crystallogr. B 69, 249-259. https://doi.org/ 10.1107/S2052519213010014.
  • Saito, T., Itabashi, T., Wakana, D., Takeda, H., Yaguchi, T., Kawai, K., Hosoe, T., 2016. Isolation and structure elucidation of new phthalide and phthalane derivatives, isolated as antimicrobial agents from Emericella sp. IFM57991. J. Antibiot. 69, 89-96. https://doi.org/10.1038/ja.2015.85.
  • Savary, S., Teng, P.S., Willocquet, L., Nutter Jr., F.W., 2006. Quantification and modeling of crop losses: a review of purposes. Annu. Rev. Phytopathol. 44, 89-112. https:// doi.org/10.1146/annurev.phyto.44.070505.143342.
  • Sheldrick, G.M., 2008. A short history of SHELX. Acta Crystallogr. A. 64, 112-122. https://doi.org/10.1107/S0108767307043930.
  • Smith, S.G., Goodman, J.M., 2010. Assigning stereochemistry to single diastereoisomers by GIAO NMR calculation: the DP4 probability. J. Am. Chem. Soc. 132, 12946-12959. https://doi.org/10.1021/ja105035r.
  • Tanabe, S., Kunisue, T., 2007. Persistent organic pollutants in human breast milk from Asian countries. Environ. Pollut. 146, 400-413. https://doi.org/10.1016/j.en_ vpol.2006.07.003.
  • Theuretzbacher, U., Outterson, K., Engel, A., Karl´en, A., 2020. The global preclinical antibacterial pipeline. Nat. Rev. Microbiol. 18, 275-285. https://doi.org/10.1038/ s41579-019-0288-0.
  • Vasundhara, M., Kumar, A., Reddy, M.S., 2016. Molecular approaches to screen bioactive compounds from endophytic fungi. Front. Microbiol. 14, 1774. https://doi.org/ 10.3389/fmicb.2016.01774.
  • Wiemann, P., Keller, N.P., 2014. Strategies for mining fungal natural products. J. Ind. Microbiol. Biotechnol. 41, 301-313. https://doi.org/10.1007/s10295-013-1366-3.
  • Wu, X., Fang, L.Z., Liu, F.L., Pang, X.J., Qin, H.L., Zhao, T., Xu, L.L., Yang, D.F., Yang, X. L., 2017. New prenylxanthones, polyketide hemiterpenoid pigments from the endophytic fungus Emericella sp. XL029 and their anti-agricultural pathogenic fungal and antibacterial activities. RSC Adv. 7, 31115-31122. https://doi.org/10.1039/ C7RA04762B.
  • Wu, X., Pang, X.J., Xu, L.L., Zhao, T., Long, X.Y., Zhang, Q.Y., Qin, H.L., Yang, D.F., Yang, X.L., 2018. Two new alkylated furan derivatives with antifungal and antibacterial activities from the plant endophytic fungus Emericella sp. XL029. Nat. Prod. Res. 32, 2625-2631. https://doi.org/10.1080/14786419.2017.137_426 9.
  • Xu, K., Li, X.Q., Zhao, D.L., Zhang, P., 2021. Antifungal secondary metabolites produced by the fungal endophytes: chemical diversity and potential use in the development of biopesticides. Front. Microbiol. 12, 689527 https://doi.org/10.3389/ fmicb.2021.689527.
  • Yang, S.W., Chan, T.M., Terracciano, J., Loebenberg, D., Patel, M., Gullo, V., Chu, M., 2006. A new 5-alkenylresorcinol sch 725681 from Aspergillus sp. J. Antibiot. 59, 190-192. https://doi.org/10.1038/ja.2006.27.
  • Zhu, A., Yang, M.Y., Zhang, Y.H., Shao, C.L., Wang, C.Y., Hu, L.D., Cao, F., Zhu, H.J., 2018. Absolute configurations of 14,15-hydroxylated prenylxanthones from a marine-derived Aspergillus sp. fungus by chiroptical methods. Sci. Rep. -UK 8, 10621. https://doi.org/10.1038/s41598-018-28996-5.
  • Zorzet, A., 2014. Overcoming scientific and structural bottlenecks in antibacterial discovery and development. Ups. J. Med. Sci. 119, 170-175. https://doi.org/ 10.3109/03009734.2014.897277.