Published February 28, 2023 | Version v1
Journal article Restricted

Exploration of anticancer potential of Lantadenes from weed Lantana camara: Synthesis, in silico, in vitro and in vivo studies

  • 1. * & University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India & School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, 248007, India

Description

Chauhan, Monika, Dhar, Zahid Ahmad, Gorki, Varun, Sharma, Sonia, Koul, Ashwani, Bala, Shashi, Kaur, Ramandeep, Kaur, Sukhbir, Sharma, Manu, Dhingra, Neelima (2023): Exploration of anticancer potential of Lantadenes from weed Lantana camara: Synthesis, in silico, in vitro and in vivo studies. Phytochemistry (113525) 206: 1-12, DOI: 10.1016/j.phytochem.2022.113525, URL: http://dx.doi.org/10.1016/j.phytochem.2022.113525

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:0C6AFF9B9D116B39FFEDA902FFD5FF9E

References

  • Ahmed, Z.F., Shoaib, A.E.M., Wassel, G.M., El-Sayyad, S.M., 1972. Phytochemical study of Lantana camara. Planta Med. 22, 34-37. https://doi.org/10.1055/s-0028- 1099554.
  • Begum, S., Raza, S.M., Siddiqui, B.S., Siddiqui, S., 1995. Triterpenoids from the aerial parts of Lantana camara. J. Nat. Prod. 58, 1570-1574. https://doi.org/10.1021/ np50124a014.
  • Bohnert, T., Gan, L.S., 2013. Plasma protein binding: from discovery to development. J. Pharm. Sci. 102, 2953-2994. https://doi.org/10.1002/jps.23614.
  • Bos, J.D., 1997. The skin as an organ of immunity. Clin. Exp. Immunol. 107, 3-5.
  • Chauhan, M., Aggarwal, V., Sharma, M., Dhingra, N., 2021. Lantadenes targeting NF-κB in cancer: molecular docking and ADMET predictions. Int. J. Life Sci. Pharma Res. 11, 114-122. https://doi.org/10.22376/ijpbs/lpr.2021.11.2.P114-122.
  • Chauhan, M., Sharma, A., Suthar, S.K., Aggarwal, V., Lee, H.B., Sharma, M., 2014. Synthesis of lantadeneanalogs with marked in vitro inhibition of lung adenocarcinoma and TNF-α induced nuclear factor-kappa B (NF-κB) activation. Bioorg. Med. Chem. Lett. 24, 3814-3818. https://doi.org/10.1016/j. bmcl.2014.06.068.
  • Clark, D.E., 2003. In silico prediction of blood-brain barrier permeation. Drug Discov. Today 8, 927-933. https://doi.org/10.1016/S1359-6446(03)02827-7.
  • Clark, D.E., 2011. What has polar surface area ever done for drug discovery? Future Med. Chem. 3, 469-484. https://doi.org/10.4155/fmc.11.1.
  • Coleman, R.G., Carchia, M., Sterling, T., Irwin, J.J., Shoichet, B.K., 2013. Ligand pose and orientational sampling in molecular docking. PLoS One 8, 75992-75994. https://doi.org/10.1371/journal.pone.0075992.
  • Colotta, F., Allavena, P., Sica, A., Garlanda, C., Mantovani, A., 2009. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 1073-1081. https://doi.org/10.1093/carcin/bgp127.
  • Dadzie, O.E., Jablonski, N.G., Mahalingam, M., Dupuy, A., Petit, A., 2014. Skin cancer, photoprotection, and skin of color. J. Am. Acad. Dermatol. 71, 586-587. https://doi. org/10.1016/j.jaad.2014.04.071.
  • Danker, T., Moller, C., 2014. Early identification of hERG liability in drug discovery programs by automated patch clamp. Front. Chem. 5, 203-208. https://doi.org/ 10.3389/fphar.2014.00203.
  • Dong, J., Wang, N.N., Yao, Z.J., Zhang, L., Cheng, Y., Ouyang, D., LuAP, Cao, D.S., 2018. ADMETlab: a platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J. Cheminf. 10, 29-34. https://doi. org/10.1186/s13321-018-0283-x.
  • Dunnington, K., Benrimoh, N., Brandquist, C., Cardillo-Marricco, N., Di Spirito, M., Grenier, J., 2018. Application of pharmacokinetics in early drug development. In: Pharmacokinetics and Adverse Effects of Drugs-Mechanisms and Risks Factors, vol. 13. Intechopen Limited, pp. 57-71. https://doi.org/10.5772/intchopen.74189.
  • Ekwealor, K.U., Echereme, C.B., Ofobeze, T.N., Okereke, C.N., 2019. Economic importance of weeds: a review. Asian J. Plant Sci. 3, 1-11. https://doi.org/10.9734/ APRJ/2019/v3i230063.
  • Elentner, A., Ortner, D., Clausen, B., Gonzalez, F.J., Fern´andez-Salguero, P.M., Schmuth, M., Dubrac, S., 2015. Skin response to a carcinogen involves the xenobiotic receptor pregnane X receptor. Exp. Dermatol. 24, 835-840. https://doi.org/ 10.1111/exd.12766.
  • Ezzat, M.I., Gendy, E.I.S.N., Saad, A.S., Abdo, W.S., El Sayed, A.M., Elmotayam, A.K., 2020. Secondary metabolites from Lantana camara L. flowers extract exhibit in vivo anti-urolithiatic activity in adult Wistar albino rats. Nat. Prod. Res. 36, 1115-1117. https://doi.org/10.1080/14786419.2020.1853726.
  • Filler, R.B., Roberts, S.J., Girardi, M., 2007. Cutaneous two-stage chemical carcinogenesis. Cold Spring Harb. Protoc. 9, 4837-4845. https://doi.org/10.1101/ pdb.prot4837.
  • Goodspeed, A., Heiser, L.M., Gray, J.W., Costello, J.C., 2016. Tumor-derived cell lines as molecular models of cancer pharmacogenomics. Mol. Cancer Res. 14, 3-13. https:// doi.org/10.1158/1541-7786.MCR-15-0189.
  • Gunzel, D., Yu, A.S., 2013. Claudins and the modulation of tight junction permeability. Physiol. Rev. 93, 525-569. https://doi.org/10.1152/physrev.00019.2012.
  • Gupta, A.K., Bharadwaj, M., Mehrotra, R., 2016. Skin cancer concerns in people of color: risk factors and prevention. Asian Pac. J. Cancer Prev. APJCP 17, 5257-5267. https://doi.org/10.22034/APJCP.2016.17.12.5257.
  • Halperin, I., Ma, B., Wolfson, H., Nussinov, R., 2002. Principles of docking: an overview of search algorithms and a guide to scoring functions. Proteins Struct. Funct. Genet. 47, 409-443. https://doi.org/10.1002/prot.10115.
  • Hanahan, D., Weinberg, R.A., 2011. Hallmarks of cancer: the next generation. Cell 144, 646-674. https://doi.org/10.1016/j.cell.2011.02.013.
  • Hasin, Y., Seldin, M., Lusis, A., 2017. Multi-omics approaches to disease. Genome Biol. 18, 1-15. https://doi.org/10.1186/s13059-017-1215-1.
  • Hiatt, R.A., Beyeler, N., 2020. Cancer and climate change. Lancet Oncol. 21, 519-527. https://doi.org/10.1016/S1470-2045(20)30448-4.
  • Houghton, P., Fang, R., Techatanawat, I., Steventon, G., Hylands, P.J., Lee, C.C., 2007. The sulphorhodamine (SRB) assay and other approaches to testing plant extracts and derived compounds for activities related to reputed anticancer activity. Methods 42, 377-387. https://doi.org/10.1016/j.ymeth.2007.01.003.
  • Hussain, H., Hussain, J., Al-Harrasi, A., Shinwari, Z.K., 2011. Chemistry of some species genus Lantana. Pakistan J. Bot. 43, 51-62.
  • Jiang, W.G., Sanders, A.J., Katoh, M., Ungefroren, H., Gieseler, F., Prince, M., Thompson, S.K., Zollo, M., Spano, D., Dhawan, P., Sliva, D., 2015. Tissue invasion and metastasis: molecular, biological and clinical perspectives. Semin. Cancer Biol. 35, 244-275. https://doi.org/10.1016/j.semcancer.2015.03.008.
  • Kaur, J., Sharma, M., Sharma, P.D., Bansal, M.P., 2010. Antitumor activity of lantadenes in DMBA/TPA induced skin Tumors in mice: expression of transcription factors. Am. J. Biomed. Sci. 2, 79-90. https://doi.org/10.5099/aj100100079.
  • Kazmi, S.R., Jun, R., Yu, M.S., Jung, C., Na, D., 2019. In silico approaches and tools for the prediction of drug metabolism and fate: a review. Comput. Biol. Med. 106, 54-64. https://doi.org/10.1016/j.compbiomed.2019.01.008.
  • Kim, H.J., Hawke, N., Baldwin, A.S., 2006. NF-κB and IKK as therapeutic targets in cancer. Cell Death Differ. 13, 738-747. https://doi.org/10.1038/sj.cdd.4401877.
  • Knegjens, J.L., Hauptmann, M., Pameijer, F.A., Balm, A.J., Hoebers, F.J., De Bois, J.A., Kaanders, J.H., Van Herpen, C.M., Verhoef, C.G., Wijers, O.B., Wiggenraad, R.G., 2011. Tumor volume as prognostic factor in chemoradiation for advanced head and neck cancer. Head Neck 33, 375-382. https://doi.org/10.1002/hed.21459.
  • Kumar, S.S., Tailor, N., Lee, H.B., Sharma, M., 2013. Reduced Lantadenes A and B: semisynthetic synthesis, selective cytotoxicity, apoptosis induction and inhibition of NO, TNF-α production in HL-60 cells. Med. Chem. Res. 22, 3379-3388. https://doi.org/ 10.1007/s00044-012-0354-x.
  • Leiter, U., Keim, U., Garbe, C., 2019. Epidemiology of skin cancer: update 2019. In: Sunlight, Vitamin D and Skin Cancer, vol. 11, pp. 123-139. https://doi.org/ 10.1007/978-3-030-46227-7-6.
  • Lipinski, C.A., 2000. Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods 44, 235-249. https://doi.org/ 10.1016/S1056-8719(00)00107-6.
  • Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J., 1997. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3-25. https://doi.org/10.1016/ S0169-409X(96)00423-1.
  • Markham, A., 2019. Alpelisib: first global approval. Drugs 79, 1249-1253. https://doi. org/10.6084/m9.figshare.8317130.
  • Mirabelli, P., Coppola, L., Salvatore, M., 2019. Cancer cell lines are useful model systems for medical research. Cancers 11, 1098-1099. https://doi.org/10.3390/ cancers11081098.
  • Niu, N., Wang, L., 2015. In vitro human cell line models to predict clinical response to anticancer drugs. Pharmacogenomics 16, 273-285. https://doi.org/10.2217/ pgs.14.170.
  • Pardridge, W.M., 1998. CNS drug design based on principles of blood-brain barrier transport. J. Neurochem. 70, 1781-1792. https://doi.org/10.1046/j.1471- 4159.1998.70051781.x.
  • Petronelli, A., Pannitteri, G., Testa, U., 2009. Triterpenoids as new promising anticancer drugs. Anticancer Drugs 20, 880-892. https://doi.org/10.1097/ CAD.0b013e328330fd90.
  • Rajashekar, Y., Ravindra, K.V., Bakthavatsalam, N., 2014. Leaves of Lantana camara Linn. (Verbenaceae) as a potential insecticide for the management of three species of stored grain insect pests. J. Food Sci. Technol. 51, 3494-3499. https://doi.org/ 10.1007/s13197-012-0884-8.
  • Ren, Y., Kinghorn, A.D., 2019. Natural product triterpenoids and their semi-synthetic derivatives with potential anticancer activity. Planta Med. 85, 802-814. https://doi. org/10.1055/a-0832-2383.
  • Rutkowski, T., 2014. The role of tumor volume in radiotherapy of patients with head and neck cancer. Radiat. Oncol. J. 9, 1-9. https://doi.org/10.1186/1748-717X-9-23.
  • Sapi, J., Kovacs, L., Drexler, D.A., Kocsis, P., Gajari, D., Sapi, Z., 2015. Tumor volume estimation and quasi-continuous administration for most effective bevacizumab therapy. PLoS One 10, 0142190. https://doi.org/10.1371/journal.pone.0142190.
  • Shanmugam, M.K., Dai, X., Kumar, A.P., Tan, B.K., Sethi, G., Bishayee, A., 2014. Oleanolic acid and its synthetic derivatives for the prevention and therapy of cancer: preclinical and clinical evidence. Cancer Lett. 346, 206-216. https://doi.org/ 10.1016/j.canlet.2014.01.016.
  • Sharma, M., Sharma, P.D., 2006. Optimization of lantadene isolation and preparation of 22β- hydroxy oleanonic acid. Chem. Nat. Compd. 42, 442-444. https://doi.org/ 10.1007/s10600-006-0176-5.
  • Sharma, M., Sharma, P.D., Bansal, M.P., 2007a. Chemopreventive effect of Lantana camara leaf extract on 7, 12-Dimethylbenz [a] anthracene-induced squamous cell carcinoma of skin in swiss albino mice. Pharm. Biol. 45, 145-148. https://doi.org/ 10.1080/13880200601113115.
  • Sharma, M., Sharma, P.D., Bansal, M.P., Singh, J., 2007b. Synthesis, cytotoxicity, and antitumor activity of Lantadene A congeners. Chem. Biodivers. 4, 932-939. https:// doi.org/10.1002/cbdv.200790082.
  • Sharma, O.P., Dawra, R.K., Makkar, H.P.S., 1987. Isolation and partial purification of lantana (Lantana camara L.) toxins. Toxicol. Lett. 37, 165-172. https://doi.org/ 10.1016/0378-4274(87)90153-6.
  • Sharma, O.P., Sharma, S., Dawra, R.K., 1997. Reversed-phase high-performance liquid chromatographic separation and quantification of lantadenes using isocratic systems. J. Chromatogr. 786, 181-184. https://doi.org/10.1016/S0021-9673(97) 00536-0.
  • Sharma, M., Sharma, P.D., 2007. Bansal, M.P. Chemopreventive effect of Lantana camara leaf extract on 7, 12-Dimethylbenz [a] anthracene-induced squamous cell carcinoma of skin in swiss albino mice. Pharm. Biol. 45, 145-148. https://doi.org/10.1080/ 13880200601113115.
  • Shen, B., 2015. A new golden age of natural products drug discovery. Cell 16, 1297-1300. https://doi.org/10.1016/j.cell.2015.11.031.
  • Shou, W.Z., 2020. Current status and future directions of high-throughput ADME screening in drug discovery. J. Pharm. Anal. 10, 201-208. https://doi.org/10.1016/ j.jpha.2020.05.004.
  • Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J.T., Bokesch, H., Kenney, S., Boyd, M.R., 1990. New calorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 82, 1107-1112. https://doi.org/ 10.1093/jnci/82.13.1107.
  • Smoller, B.R., 2006. Histologic criteria for diagnosing primary cutaneous malignant melanoma. Mod. Pathol. 19, 34-40. https://doi.org/10.1038/modpathol.3800508.
  • Stepp, J.R., 2004. The role of weeds as sources of pharmaceuticals. J. Ethnopharmacol. 92, 163-166. https://doi.org/10.1016/j.jep.2004.03.002.
  • Stepp, J.R., Moerman, D.E., 2001. The importance of weeds in ethnopharmacology. J. Ethnopharmacol. 75, 19-23. https://doi.org/10.1016/S0378-8741(00)00385-8.
  • Subapriya, R., Nagini, S., 2003. Ethanolic neem leaf extract protects against N-methyl-N'- nitro-N-nitrosoguanidine-induced gastric carcinogenesis in Wistar rats. Asian Pac. J. Cancer Prev. APJCP 4, 215-224.
  • Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram, I., Jemal, A., Bray, F., 2021. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: Cancer J. Clin. 71, 209-249. https://doi.org/10.3322/caac.21660.
  • Suthar, S.K., Boon, H.L., Sharma, M., 2014a. Novel lung adenocarcinoma and nuclear factor-kappa B (NF-κB) inhibitors: synthesis and evaluation of lantadene congeners. Eur. J. Med. Chem. 74, 135-144. https://doi.org/10.1016/j.ejmech.2013.12.052.
  • Suthar, S.K., Hooda, A., Sharma, A., Bansal, S., Monga, J., Chauhan, M., Sharma, M., 2020. Isolation optimisation, synthesis, molecular docking and in silico ADMET studies of lantadene a and its derivatives. Nat. Prod. Res. 3, 1-6. https://doi.org/ 10.1080/14786419.2020.1752204.
  • Suthar, S.K., Lee, H.B., Sharma, M., 2014b. The synthesis of non-steroidal antiinflammatory drug (NSAID)-lantadene prodrugs as novel lung adenocarcinoma inhibitors via the inhibition of cyclooxygenase-2 (COX-2), cyclin D1 and TNFα- induced NF-κB activation. RSC Adv. 4, 19283-19293. https://doi.org/10.1039/ C4RA00280F.
  • Suthar, S.K., Tailor, N., Lee, H.B., Sharma, M., 2013. Reduced lantadenes A and B: semisynthetic synthesis, selective cytotoxicity, apoptosis induction and inhibition of NO, TNF-a production in HL-60 cells. Med. Chem. Res. 22, 3379-3388. https://doi. org/10.1007/s00044-012-0354-x.
  • Tailor, N.K., Boon, H.L., Sharma, M., 2013a. Synthesis and in vitro anticancer studies of novel C-2 arylidene congeners of lantadenes. Eur. J. Med. Chem. 64, 285-291. https://doi.org/10.1016/j.ejmech.2013.04.009.
  • Tailor, N.K., Jaiswal, V., Lan, S.S., Lee, H.B., Sharma, M., 2013c. Synthesis, selective cancer cytotoxicity and mechanistic studies of novel analogs of lantadenes. Anti Cancer Agents Med. Chem. 13, 957-966. https://doi.org/10.2174/ 18715206113139990127.
  • Tailor, N.K., Lee, H.B., Sharma, M., 2013b. Effective melanoma inhibition by synthetic pentacyclic triterpenoid 2-(3-phenylprop-2-en-1-ylidene)-22β- hydroxy-3-oxoolean- 12-en-28-oic acid: an in vitro and in vivo study. J. Environ. Pathol. Toxicol. Oncol. 32, 59-72. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2013007125.
  • Tapia, M.A., Gonz´alez-Navarrete, I., Dalmases, A., Bosch, M., Rodriguez-Fanjul, V., Rolfe, M., Ross, J.S., Mezquita, J., Mezquita, C., Bachs, O., Gascon, P., 2007. Inhibition of the canonical IKK/NFκB pathway sensitizes human cancer cells to doxorubicin. Cell Cycle 6, 2284-2292. https://doi.org/10.4161/cc.6.18.4721.
  • Thomford, N.E., Senthebane, D.A., Rowe, A., Munro, D., Seele, P., Maroyi, A., Dzobo, K., 2018. Natural products for drug discovery in the 21st century: innovations for novel drug discovery. Int. J. Mol. Sci. 19, 15780-15781. https://doi.org/10.3390/ ijms19061578.
  • Vahatupa, M., Pemmari, T., Junttila, I., Pesu, M., Jarvinen, T.A., 2019. Chemical-induced skin carcinogenesis model using Dimethylbenz [a] anthracene and 12-O-Tetradecanoyl Phorbol-13-acetate. JoVE 154, 1-8. https://doi.org/10.3791/60445.
  • Veerasamy, R., Rajak, H., Jain, A., Sivadasan, S., Varghese, C.P., Agrawal, R.K., 2011. Validation of QSAR models-strategies and importance. Int. J. Drug Des. Discov. 3, 511-519.
  • Vichai, V., Kirtikara, K., 2006. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc. 3, 1112-1126. https://doi.org/10.1038/nprot.2006.179.
  • Wang, N.N., Dong, J., Deng, Y.H., Zhu, M.F., Wen, M., Yao, Z.J., Lu, A.P., Wang, J.B., Cao, D.S., 2016. ADME properties evaluation in drug discovery: prediction of Caco-2 cell permeability using a combination of NSGA-II and boosting. J. Chem. Inf. Model. 56, 763-773. https://doi.org/10.1021/acs.jcim.5b00642.
  • Wang, N.N., Huang, C., Dong, J., Yao, Z.J., Zhu, M.F., Deng, Z.K., Lv, B., Lu, A.P., Chen, A.F., Cao, D.S., 2017. Predicting human intestinal absorption with modified random forest approach: a comprehensive evaluation of molecular representation, unbalanced data, and applicability domain issues. RSC Adv. 7, 19007-19018. https://doi.org/10.1039/C6RA28442F.
  • Watanabe, R., Ohashi, R., Esaki, T., Kawashima, H., Natsume-Kitatani, Y., Nagao, C., Mizuguchi, K., 2019. Development of an in silico prediction system of human renal excretion and clearance from chemical structure information incorporating fraction unbound in plasma as a descriptor. Sci. Rep. 9, 1-11. https://doi.org/10.1038/ s41598-019-55325-1.
  • Watanabe, Y., Dahlman, E.L., Leder, K.Z., Hui, S.K., 2016. A mathematical model of tumor growth and its response to single irradiation. Theor. Biol. Med. Model. 13, 1-20.
  • Waterbeemd, V.D.H., Smith, D.A., Beaumont, K., Walker, D.K., 2001. Property-based design: optimization of drug absorption and pharmacokinetics. J. Med. Chem. 44, 1313-1333. https://doi.org/10.1021/jm000407e.
  • Waterbeemd, V.D.H., 2002. High-throughput and in silico techniques in drug metabolism and pharmacokinetics. Curr. Opin. Drug Discov. Dev 5, 33-43.
  • Waterbeemd, V.D.H., Gifford, E., 2003. ADMET in silico modelling: towards prediction paradise? Nat. Rev. Drug Discov. 2, 192-204. https://doi.org/10.1038/nrd1032.
  • Wittekind, C., Neid, M., 2005. Cancer invasion and metastasis. Oncology 69, 14-16. https://doi.org/10.1159/000086626.
  • Wong, R.S., 2011. Apoptosis in cancer: from pathogenesis to treatment. J. Exp. Clin. Cancer Res. 30, 1-14. https://doi.org/10.1186/1756-9966-30-87.
  • Xia, Y., Shen, S., Verma, I.M., 2014. NF-kB an active player in human cancers. Cancer Immun. 2, 823-830. https://doi.org/10.1158/2326-6066.CIR-14-0112.
  • Yang, H., Sun, L., Li, W., Liu, G., Tang, Y., 2018. In silico prediction of chemical toxicity for drug design using machine learning methods and structural alerts. Front. Chem. 6, 30-37. https://doi.org/10.3389/fchem.2018.00030.