Published February 28, 2023 | Version v1
Journal article Restricted

Triterpenoids from Uncaria macrophylla as ferroptosis inhibitors

  • 1. * & State Key Laboratory of Natural and Biomimetic Drugs and Department of Natural Medicines, School of Pharmaceutical Sciences, Peking University Health Science

Description

Liang, Xiaomin, Wei, Yuding, Hou, Xingzi, Guo, Qiang, Liang, Hong, Zeng, Kewu, Tu, Pengfei, Zhang, Qingying (2023): Triterpenoids from Uncaria macrophylla as ferroptosis inhibitors. Phytochemistry (113530) 206: 1-9, DOI: 10.1016/j.phytochem.2022.113530, URL: http://dx.doi.org/10.1016/j.phytochem.2022.113530

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:FF807146F301FFB1FFE4E16F26448A14

References

  • Abbruzzese, G., Cossu, G., Balocco, M., Marchese, R., Murgia, D., Melis, M., Renzo, G., Susanna, B., Gildo, M., Uberto, R., Ubaldo, B., Gian, L.F., 2011. A pilot trial of deferiprone for neurodegeneration with brain iron accumulation. Haematologica 96, 1708-1711. https://doi.org/10.3324/haematol.2011.043018.
  • Akira, I., Kohei, K., Toshiko, S., Yasuhisa, S., 1995. Triterpenoids from callus tissue cultures of Paeonia species. Phytochemistry 38, 1203-1207. https://doi.org/ 10.1016/0031-9422(94)00445-Y.
  • Buijs, M., Doan, N.T., Van Rooden, S., Versluis, M.J., Van Lew, B., Milles, J., Van der Grond, J., Van Buchem, M.A., 2017. In vivo assessment of iron content of the cerebral cortex in healthy aging using 7-Tesla T2*-weighted phase imaging. Neurobiol. Aging 53, 20-26. https://doi.org/10.1016/j. neurobiolaging.2016.09.005.
  • Chen, H.W., Lin, J., Zhu, S., Zeng, K.W., Tu, P.F., Jiang, Y., 2022. Anti-inflammatory constituents from the stems and leaves of Glycosmis ovoidea Pierre. Phytochemistry 203, 113369. https://doi.org/10.1016/j.phytochem.2022.113369.
  • Cheng, J., Xu, T., Xun, C., Guo, H., Cao, R., Gao, S., Sheng, W., 2021. Carnosic acid protects against ferroptosis in PC12 cells exposed to erastin through activation of Nrf2 pathway. Life Sci. 266, 118905 https://doi.org/10.1016/j.lfs.2020.118905.
  • Devos, D., Moreau, C., Devedjian, J.C., Kluza, J., Petrault, M., Laloux, C., Aur´elie, J., Gilles, R., Guillaume, G., Nathalie, R., Alain, D., Patrice, J., Kathy, D., Florent, A., Laura, R., Lucie, H., Guillaume, G., Wance, F., Bernard, S., Isabelle, S.V., Noel, Z., Alain, D., Jean-Christophe, C., Dominik, P., Marcel, L., Christian, R., Luc, D., Philippe, M., R´egis, B., 2014. Targeting chelatable iron as a therapeutic modality in Parkinson' s disease. Antioxidants Redox Signal. 21, 195-210. https://doi.org/ 10.1089/ars.2013.5593.
  • Dixon, S.J., Lemberg, K.M., Lamprecht, M.R., Skouta, R., Zaitsev, E.M., Gleason, C.E., Patel, D.N., Bauer, A.J., Cantley, A.M., Yang, W.S., Morrison 3rd, B., Stockwell, B.R., 2012. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060-1072. https://doi.org/10.1016/j.cell.2012.03.042.
  • Dolma, S., Lessnick, S.L., Hahn, W.C., Stockwell, B.R., 2003. Identification of genotypeselective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3, 285-296. https://doi.org/10.1016/s1535-6108 (03)00050-3.
  • Dong, H., Xia, Y., Jin, S., Xue, C., Wang, Y., Hu, R., Jiang, H., 2021. Nrf2 attenuates ferroptosis-mediated IIR-ALI by modulating TERT and SLC7A11. Cell Death Dis. 12, 1027. https://doi.org/10.1038/s41419-021-04307-1.
  • Gudoityte, E., Arandarcikaite, O., Mazeikiene, I., Bendokas, V., Liobikas, J., 2021. Ursolic and oleanolic acids: plant metabolites with neuroprotective potential. Int. J. Mol. Sci. 22, 4599. https://doi.org/10.3390/ijms22094599.
  • Guo, Q., Si, X.L., Shi, Y.T., Yang, H.S., Liu, X.Y., Liang, H., Tu, P.F., Zhang, Q.Y., 2019. Glucoconjugated monoterpene indole alkaloids from Uncaria rhynchophylla. J. Nat. Prod. 82, 3288-3301. https://doi.org/10.1021/acs.jnatprod.9b00490.
  • Hill, R.A., Connolly, J.D., 2018. Triterpenoids. Nat. Prod. Rep. 35, 1294-1329. https:// doi.org/10.1039/c8np00029h.
  • Hill, R.A., Connolly, J.D., 2020. Triterpenoids. Nat. Prod. Rep. 37, 962-998. https://doi. org/10.1039/c9np00067d.
  • Khan, I.A., Sticher, O., Rali, T., 1993. New triterpenes from the leaves of Timonius Timon. J. Nat. Prod. 56, 2163-2165. https://doi.org/10.1021/np50102a019.
  • Klopstock, T., Tricta, F., Neumayr, L., Karin, I., Zorzi, G., Fradette, C., Kmie´c, T., Buchner, B., Steele, H.E., Horvath, R., Chinnery, P.F., Basu, A., Kupper, C., Neuhofer, C., K´alm´an, B., Duˇsek, P., Yapici, Z., Wilson, I., Zhao, F., Zibordi, F., Nardocci, N., Aguilar, C., Hayflick, S.J., Spino, M., Blamire, A.M., Hogarth, P., Vichinsky, E., 2019. Safety and efficacy of deferiprone for pantothenate kinaseassociated neurodegeneration: a randomised, double-blind, controlled trial and an open-label extension study. Lancet Neurol. 18, 631-642. https://doi.org/10.1016/ s1474-4422(19)30142-5.
  • Kutateladze, A.G., Reddy, D.S., 2017. High-throughput in silico structure validation and revision of halogenated natural products is enabled by parametric corrections to
  • Liu, H., Fan, Y., Wang, W., Liu, N., Zhang, H., Zhu, Z., Liu, A., 2012. Polysaccharides from Lycium barbarum leaves: isolation, characterization and splenocyte proliferation activity. Int. J. Biol. Macromol. 51, 417-422. https://doi.org/10.1016/ j.ijbiomac.2012.05.025.
  • Ma, M.X., Yang, C.R., Zhang, Y.J., 2008. Complete assignments of H-1 and C-13 NMR spectral data for three polyhydroxylated 12-ursen-type triterpenoids from Dischidia esquirolii. Magn. Reson. Chem. 46, 571-575. https://doi.org/10.1002/mrc.2212.
  • Ma, B., Liu, S.k., Xie, Y.Y., Yoshihiro, K., Dan, Y., 2009. Flavonol glycosides and triterpenes from the leaves of Uncaria rhynchophylla (Miq.) Jacks. Asian J. Tradit Med. 4, 85-91. https://www.researchgate.net/publication/260389182.
  • Martin-Bastida, A., Ward, R.J., Newbould, R., Piccini, P., Sharp, D., Kabba, C., Patel, M. C., Spino, M., Connelly, J., Tricta, F., Crichton, R.R., Dexter, D.T., 2017. Brain iron chelation by deferiprone in a phase 2 randomised double-blinded placebo controlled clinical trial in Parkinson' s disease. Sci. Rep. 7, 1398. https://doi.org/10.1038/ s41598-017-01402-2.
  • Blasco, H., Veyrat-Durebex, C., Corcia, P., Oeckl, P., Otto, M., Dupuis, L., Garcon, G., Defebvre, L., Cabantchik, Z.I., Duce, J., Bordet, R., Devos, D., 2018. Could conservative iron chelation lead to neuroprotection in amyotrophic lateral sclerosis? Antioxidants Redox Signal. 29, 742-748. https://doi.org/10.1016/s1474-4422(19) 30142-5.
  • Qiang, Z.Z., Dong, H., Xia, Y.Y., Chai, D., Hu, R., Jiang, H., 2020. Nrf2 and STAT3 alleviates ferroptosis-mediated IIR-ALI by regulating SLC7A11. Oxid. Med. Cell. Longev. 5146982 https://doi.org/10.1155/2020/5146982.
  • Qin, N., Lu, X., Liu, Y.J., Qiao, Y.T., Qu, W., Feng, F., Sun, H.H.P., 2021. Recent research progress of Uncaria spp. based on alkaloids: phytochemistry, pharmacology and structural chemistry. Eur. J. Med. Chem. 210, 112960 https://doi.org/10.1016/j. ejmech.2020.112960.
  • Seibt, T.M., Proneth, B., Conrad, M., 2019. Role of GPx4 in ferroptosis and its pharmacological implication. Free Radic. Biol. Med. 133, 144-152. https://doi.org/ 10.1016/j.freeradbiomed.2018.09.014.
  • Shim, J.S., Kim, H.G., Ju, M.S., Choi, J.G., Jeong, S.Y., Oh, M.S., 2009. Effects of the hook of Uncaria rhynchophylla on neurotoxicity in the 6-hydroxydopamine model of Parkinson' s disease. J. Ethnopharmacol. 126, 361-365. https://doi.org/10.1016/j. jep.2009.08.023.
  • Tabuchi, M., Yamaguchi, T., Iizuka, S., Imamura, S., Karashi, Y., Kase, Y., 2009. Ameliorative effects of yokukansan, a traditional Japanese medicine, on learning and non-cognitive disturbances in the Tg2576 mouse model of Alzheimer' s disease. J. Ethnopharmacol. 122, 157-162. https://doi.org/10.1016/j.jep.2008.12.010.
  • Tan, Q., Fang, Y., Peng, X., Zhou, H., Xu, J., Gu, Q., 2021. A new ferroptosis inhibitor, isolated from Ajuga nipponensis, protects neuronal cells via activating NRF2- antioxidant response elements (AREs) pathway. Bioorg. Chem. 115, 105177 https:// doi.org/10.1016/j.bioorg.2021.105177.
  • Tanaka, T., Nakashima, T., Ueda, T., Tomii, K., Kouno, I., 2007. Facile discrimination of aldose enantiomers by reversed-phase HPLC. Chem. Pharm. Bull. 55, 899-901. https://doi.org/10.1248/cpb.55.899.
  • Teresa, M., Patrizia, P., Michela, F., Paola, R., Anna, C., Aquino, Rita, 2011. Triterpenoid constituents from the roots of Paeonia rockii ssp. rockii. J. Nat. Prod. 74, 2116-2121. https://doi.org/10.1021/np200359v.
  • Watanabe, H., Zhao, Q., Matsumoto, K., Tohda, M., Murakami, Y., Zhang, S.H., Kang, T. H., Mahakunakorn, P., Maruyama, Y., Sakakibara, I., Aimi, N., Takayama, H., 2003. Pharmacological evidence for antidementia effect of Choto-san (Gouteng-san), a traditional Kampo medicine. Pharmacol. Biochem. Behav. 75, 635-643. https://doi. org/10.1016/s0091-3057(03)00109-6.
  • Weiland, A., Wang, Y.M., Wu, W.H., Lan, X., Han, X.N., Li, Q., Wang, J., 2019. Ferroptosis and its role in diverse brain diseases. Mol. Neurobiol. 56, 4880-4893. https://doi.org/10.1007/s12035-018-1403-3.
  • Wei, Y.D., Yan, L.H., Liang, H., Zhu, M.X., Ye, D.L., Zhang, Q.Y., 2015. Triterpenoids from the stems of Uncaria macrophylla. J. Chin. Pharm. Sci. 24, 169-176. https://doi. org/10.5246/jcps.2015.03.021.
  • Xian, Y.F., Lin, Z.X., Zhao, M., Mao, Q.Q., Ip, S.P., Che, C.T., 2011. Uncaria rhynchophylla ameliorates cognitive deficits induced by D-galactose in mice. Planta Med. 77, 1977-1983. https://doi.org/10.1055/s-0031-1280125.
  • Zhang, B., Yang, S.L., Li, X., Zhang, Q.R., Tian, M.Y., Wang, X.L., Wang, S.J., 2022. Structures and neuroprotective activities of triterpenoids from Cynomorium coccineum subsp. songaricum (Rupr.) J. Leonard. Phytochemistry 198, 113155. https://doi.org/10.1016/j.phytochem.2022.113155.