Published January 31, 2023 | Version v1
Journal article Restricted

Verniciflavanol A, a profisetinidin-type-4-arylflavan-3-ol from toxicodendron vernicifluum protects SH-SY5Y cells against H2O2-Induced oxidative stress

  • 1. School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang, 110016, China

Description

Li, Meichen, Zhang, Yunqiang, Han, Tingting, Guan, Lu, Fan, Dongxue, Wu, Qinke, Liu, Jianyu, Xu, Yongnan, Fan, Yanhua (2023): Verniciflavanol A, a profisetinidin-type-4-arylflavan-3-ol from toxicodendron vernicifluum protects SH-SY5Y cells against H2O2-Induced oxidative stress. Phytochemistry (113487) 205: 1-13, DOI: 10.1016/j.phytochem.2022.113487, URL: http://dx.doi.org/10.1016/j.phytochem.2022.113487

Files

Restricted

The record is publicly accessible, but files are restricted to users with access.

Linked records

Additional details

Identifiers

LSID
urn:lsid:plazi.org:pub:9D2A486AD26BFFF59601FF88FFA7FC47

References

  • Akhtar, A., Sah, S.P., 2020. Insulin signaling pathway and related molecules: role in neurodegeneration and Alzheimer' s disease. Neurochem. Int. 135, 104707, 0.1016/ j.neuint.2020.104707.
  • Bam, M., Malan, J.C.S., Young, D.A., Brandt, E.V., Ferreira, D., 1990. Profisetinidin-type 4-arylflavan-3-ols and related δ- lactones. Phytochemistry 29 (1), 283-287. https:// doi.org/10.1016/0031-9422(90)89051-A.
  • Berk, S., Kaya, S., Akkol, E.K., Bardakci, H., 2022. A comprehensive and current review on the role of flavonoids in lung cancer-Experimental and theoretical approaches. Phytomedicine 98, 153938. https://doi.org/10.1016/j.phymed.2022.153938.
  • Jose ´Guilherme de Souza Corrˆea, Bianchin, Mirelli, Lopes, Ana Paula, Silva, Evandro, Ames, Franciele Q., Pomini, Armando M., Carpes, Solange T., de, Jaqueline, Carvalho, Rinaldi, Melo, Raquel Cabral, Kioshima, Erika S., Bersani-Amado, Ciomar A., Pilau, Eduardo J., , Jotao Ernesto de Carvalho, Ana Lucia T.G. Ruiz, Visentainer, Jesui V., de Oliveira Santin, Silvana M., 2021. Chemical profile, antioxidant and anti-inflammatory properties of Miconia albicans (Sw.) Triana (Melastomataceae) fruits extract. J. Ethnopharmacol. 273, 113979 https://doi.org/ 10.1016/j.jep.2021.113979.
  • Choi, J., Yoon, B., Han, Y.N., Lee, K., Ha, J., Jung, H., Park, H., 2003. Antirheumatoid arthritis effect of Rhus verniciflua and of the active component, sulfuretin. Planta Med. 69 (10), 899-904. https://doi.org/10.1055/s-2003-45097.
  • Dionisio, P., Amaral, J., Rodrigues, C., 2021. Oxidative stress and regulated cell death in Parkinson' s disease. Ageing Res. Rev. 67, 101263 https://doi.org/10.1016/j. arr.2021.101263.
  • He, J.B., Luo, J., Zhang, L., Yan, Y.M., Cheng, Y.X., 2013. Sesquiterpenoids with new carbon skeletons from the resin of Toxicodendron vernicifluum as new types of extracellular matrix inhibitors. Org. Lett. 15 (14), 3602-3605. https://doi.org/ 10.1021/ol4014415.
  • Jaganjac, M., Milkovic, L., Zarkovic, N., Zarkovic, K., 2022. Oxidative stress and regeneration. Free Radic. Biol. Med. 181, 154-165. https://doi.org/10.1016/j. freeradbiomed.2022.02.004.
  • Jang, J.Y., Shin, H., Lim, J.W., Ahn, J.H., Jo, Y.H., Lee, K., Hwang, B.Y., Jung, S.J., Kang, S.Y., Lee, M.K., 2018. Comparison of antibacterial activity and phenolic constituents of bark, lignum, leaves and fruit of Rhus verniciflua. PLoS One 13 (7), e0200257. https://doi.org/10.1371/journal.pone.0200257.
  • Kim, K.H., Moon, E., Choi, S.U., Kim, S.Y., Lee, K.R., 2013. Polyphenols from the bark of Rhus verniciflua and their biological evaluation on antitumor and anti-inflammatory activities. Phytochemistry 92, 113-121. https://doi.org/10.1016/j. phytochem.2013.05.005.
  • Kim, K.H., Moon, E., Choi, S.U., Pang, C., Kim, S.Y., Lee, K.R., 2015. Identification of cytotoxic and anti-inflammatory constituents from the bark of T oxicodendron vernicifluum (Stokes) F. A. Barkley. J. Ethnopharmacol. 162, 231-237. https://doi. org/10.1016/j.jep.2014.12.071.
  • Li, M.C., Fan, Y.H., Zhong, T., Yi, P., Fan, C.C., Wang, A.D., Liu, J.Y., Xu, Y.N., 2019. The protective effects of vernicilignan A, a new flavonolignan isolated from Toxicodendron vernicifluum on SH-SY5Y cells against oxidative stress-induced injury. Fitoterapia 134, 81-87. https://doi.org/10.1016/j.fitote.2019.01.011.
  • Li, Y., Hao, J., Shang, B., Zhao, C., Cao, Y., 2021. Neuroprotective effects of aucubin on hydrogen peroxide-induced toxicity in human neuroblastoma SH-SY5Y cells via the Nrf2/HO-1 pathway. Phytomedicine 87, 153577. https://doi.org/10.1016/j. phymed.2021.153577.
  • Lu, Tian, 2022. Molclus Program, Version 1.9.9.9. https://www.keinsci.com/research /molclus.html.
  • Markham, K.R., Mabry, T.J., 1968. The identification of twenty-three 5-deoxy- and ten 5- hydroxy-flavonoids from Baptisia lecontei (leguminosae). Phytochemistry 7 (5), 791-801. https://doi.org/10.1016/S0031-9422(00)84834-7.
  • Narimiy, T., Kanzaki, H., Yamaguchi, Y., Wada, S., Katsumata, Y., Tanaka, K., Tomonari, H., 2019. Nrf2 activation in osteoblasts suppresses osteoclastogenesis via inhibiting IL-6 expression. BoneKEy Rep. 11, 100228 https://doi.org/10.1016/j. bonr.2019.100228.
  • Oteiza, P.I., Fraga, C.G., Galleano, M., 2021. Linking biomarkers of oxidative stress and disease with flavonoid consumption: from experimental models to humans. Redox Biol. 42, 101914 https://doi.org/10.1016/j.redox.2021.101914.
  • Peng, F., Yin, H., Du, B., Niu, K., Yang, Y., Wang, S., 2022. Anti-inflammatory effect of flavonoids from chestnut flowers in lipopolysaccharide-stimulated RAW 264.7 macrophages and acute lung injury in mice. J. Ethnopharmacol. 290, 115086 https://doi.org/10.1016/j.jep.2022.115086.
  • Saravanakumar, K., Chelliah, R., Hu, X., Oh, D.H., Kathiresan, K., Wang, M.H., 2019. Antioxidant, anti-lung cancer, and anti-bacterial activities of Toxicodendron vernicifluum. Biomolecules 9 (4), 127. https://doi.org/10.3390/biom9040127, 121- 127/118.
  • Singh, P., Bajpai, V., Gupta, A., Gaikwad, A.N., Maurya, R., Kumar, B., 2019. Identification and quantification of secondary metabolites of Pterocarpus marsupium by LC-MS techniques and its in-vitro lipid lowering activity. Ind. Crop. Prod. 127, 26-35. https://doi.org/10.1016/j.indcrop.2018.10.047.
  • Slade, D., Ferreira, D., Marais, J.P.J., 2005. Circular dichroism, a powerful tool for the assessment of absolute configuration of flavonoids. Phytochemistry 66 (18), 2177-2215. https://doi.org/10.1016/j.phytochem.2005.02.002.
  • Slika, H., Mansour, H., Wehbe, N., Nasser, S.A., Iratni, R., Nasrallah, G., Shaito, A., Ghaddar, T., Kobeissy, F., Eid, A.H., 2022. Therapeutic potential of flavonoids in cancer: ROS-mediated mechanisms. Biomed. Pharmacother. 146, 112442 https:// doi.org/10.1016/j.biopha.2021.112442.
  • Sugimoto, M., Ko, R., Goshima, H., Koike, A., Shibano, M., Ko, Fujimori, 2021. Formononetin attenuates H2O2-induced cell death through decreasing ROS level by PI3K/Akt-Nrf2-activated antioxidant gene expression and suppressing MAPK- regulated apoptosis in neuronal SH-SY5Y cells. Neurotoxicology 85, 186-200. https://doi.org/10.1016/j.neuro.2021.05.014.
  • Sun, Y., Lu, Y., Saredy, J., Wang, X., Drummer, Iv C., Shao, Y., Saaoud, F., Xu, K., Liu, M., Yang, W.Y., Jiang, X., Wang, H., Yang, X., 2020. ROS systems are a new integrated network for sensing homeostasis and alarming stresses in organelle metabolic processes. Redox Biol. 37, 101696 https://doi.org/10.1016/j.redox.2020.101696.
  • Wang, S., Sun, Z., Tao, L., Gibbons, S., Zhang, W., Mu, Q., 2014. Flavonoids from Sophora moorcroftiana and their synergistic antibacterial effects on MRSA. Phytother Res. 28 (7), 1071-1076. https://doi.org/10.1002/ptr.5098.
  • Wang, A.D., Bao, Y., Liu, D., Wang, X., Li, M.C., Liu, J.Y., Xu, Y.N., 2018. Isolation and structure determination of new saponins from Pulsatilla cernua based on an NMRguided method and their anti-proliferative activities. Phytochem. Lett. 27, 9-14. https://doi.org/10.1016/j.phytol.2018.06.007.
  • Yu, W., Chen, C., Zhuang, W., Wang, W., Liu, W., Zhao, H., Lv, J., Xie, D., Wang, Q., He, F., Xu, C., Chen, B., Yamamoto, T., Koyama, H., Cheng, J., 2022. Silencing TXNIP ameliorates high uric acid-induced insulin resistance via the IRS2/AKT and Nrf2/ HO-1 pathways in macrophages. Free Radical Biol. Med. 178, 42-53. https://doi.
  • Zhang, L., Fang, Y., Zhao, X., Zheng, Y., Ma, Y., Li, H., Huang, Z., Li, L., 2021. miR-204 silencing reduces mitochondrial autophagy and ROS production in a murine AD model via the TRPML1-activated STAT3 pathway. Mol. Ther. Nucleic Acids 24, 822-831. https://doi.org/10.1016/j.omtn.2021.02.010.
  • Zhong, T., Li, M.C., Wu, H.S., Wang, D., Liu, J.Y., Xu, Y.N., Fan, Y.H., 2022. Novel flavan- 3,4-diol vernicidin B from Toxicodendron vernicifluum (Anacardiaceae) as potent antioxidant via IL-6/Nrf2 cross-talks pathways. Phytomedicine 100, 154041. https://doi.org/10.1016/j.phymed.2022.154041.
  • Zhou, Y., Wang, S., Luo, H., Xu, F., Liang, J., Ma, C., Ren, L., Wang, H., Hou, Y., 2022. Aflatoxin B1 induces microglia cells apoptosis mediated by oxidative stress through NF-κB signaling pathway in mice spinal cords. Environ. Toxicol. Pharmacol. 90, 103794 https://doi.org/10.1016/j.etap.2021.103794.